Cryptographic hash functions

Myrto Arapinis
School of Informatics
University of Edinburgh

March 07, 2016

19

Introduction

Encryption = confidentiality against eavesdropping

2/19

Introduction

Encryption = confidentiality against eavesdropping

What about authenticity and integrity against an active attacker?
— cryptographic hash functions and Message authentication
codes

— this lecture

2/19

One-way functions (OWFs)

A OWEF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all x there is no efficient
algorithm which given f(x) can compute x

3/19

One-way functions (OWFs)

A OWEF is a function that is easy to compute but hard to invert:

Definition (One-way)
A function f is a one-way function if for all x there is no efficient
algorithm which given f(x) can compute x

Constant functions ARE OWF:
for any function f(x) = ¢ (c a constant) it is impossible
to retrieve n from f(n)

3/19

One-way functions (OWFs)

A OWEF is a function that is easy to compute but hard to invert:

Definition (One-way)
A function f is a one-way function if for all x there is no efficient
algorithm which given f(x) can compute x

Constant functions ARE OWF:
for any function f(x) = ¢ (c a constant) it is impossible
to retrieve n from f(n)

The successor function in N IS NOT a OWF
given succ(n) it is easy to retrieve n = succ(n) — 1

19

One-way functions (OWFs)

A OWEF is a function that is easy to compute but hard to invert:

Definition (One-way)

A function f is a one-way function if for all x there is no efficient
algorithm which given f(x) can compute x

Constant functions ARE OWF:
for any function f(x) = ¢ (c a constant) it is impossible
to retrieve n from f(n)

The successor function in N IS NOT a OWF
given succ(n) it is easy to retrieve n = succ(n) — 1

Multiplication of large primes IS a OWF:
integer factorization is a hard problem - given p x g (where p
and g are primes) it is hard to retrieve p and g

19

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function
Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m; and my such that f(my) = f(mp)

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m; and my such that f(my) = f(mp)

Constant functions ARE NOT CRFs
for all my and my, f(my) = f(my)

4/19

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function

Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m; and my such that f(my) = f(mp)

Constant functions ARE NOT CRFs
for all my and my, f(my) = f(my)

The successor function in N IS a CRF
the predecessor of a positive integer is unique

4/19

Collision-resistant functions (CRFs)

A function is a CRF if it is hard to find two messages that get
mapped to the same value threw this function
Definition (Collision resistance)

A function f is collision resistant if there is no efficient algorithm
that can find two messages m; and my such that f(my) = f(mo)

Constant functions ARE NOT CRFs
for all my and my, f(my) = f(my)

The successor function in N IS a CRF
the predecessor of a positive integer is unique

Multiplication of large primes IS a CRF:
every positive integer has a unique prime factorization

19

Cryptographic hash functions

A cryptographic hash function takes messages of arbitrary length
end returns a fixed-size bit string such that any change to the data
will (with very high probability) change the corresponding hash
value.

Definition (Cryptographic hash function)

A cryptographic hash function H: M — T is a function that
satisfies the following 4 properties:

> [M]>>|T]
> it is easy to compute the hash value for any given message
» it is hard to retrieve a message from it hashed value (OWF)

» it is hard to find two different messages with the same hash
value (CRF)

Examples: MD4, MD5, SHA-1, SHA-256, Whirlpool, ...

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

6/19

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

» File integrity - Hashes are sometimes posted along with files
on ‘“read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

6

19

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

» File integrity - Hashes are sometimes posted along with files
on ‘“read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

» Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

6

19

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v

by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

File integrity - Hashes are sometimes posted along with files
on ‘“read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

Key derivation - Derive new keys or passwords from a single,
secure key or password.

6

19

Cryptographic hash functions: applications

» Commitments - Allow a participant to commit to a value v
by publishing the hash H(v) of this value, but revealing v only
later. Ex: electronic voting protocols, digital signatures, ...

» File integrity - Hashes are sometimes posted along with files
on ‘“read-only” spaces to allow verification of integrity of the
files. Ex: SHA-256 is used to authenticate Debian GNU/Linux
software packages

» Password verification - Instead of storing passwords in
cleartext, only the hash digest of each password is stored. To
authenticate a user, the password presented by the user is
hashed and compared with the stored hash.

» Key derivation - Derive new keys or passwords from a single,
secure key or password.

» Building block of other crypto primitives - Used to build
MAGCs, block ciphers, PRG, ...

6/19

Collision resistance and the birthday attack

Theorem
Let H: M — {0,1}" be a cryptographic hash function
(M| >>2")
Generic algorithm to find a collision in time O(2"/?) hashes:
1. Choose 2"/2 random messages in M: mq, ..., Myn/2
2. Fori=1,...,2"2 compute t; = H(m;)
3. If there exists a collision (3i,j. t; # t;)
then return (t;, tj)
else go back to 1

Birthday paradox Let r1,...,r, € {1,..., N} be independent
variables. For n=1.2 x VN, Pr(3i #j. r;=1r;) > }

= the expected number of iteration is 2

= running time O(2"/?)

= Cryptographic function used in new projects should have an
output size n > 256!

The Merkle-Damgard construction

m
|
f

\Y H,] H, H,

H, = H(m)
(fixed) |

» Compression function: h: 7 x X =T
» PB: 1000...0||mes-len (add extra block if needed)

Theorem

Let H be built using the MD construction to the compression
function h. If H admits a collision, so does h.

Example of MD constructions: MD5, SHA-1, SHA-2, . ..

Compression functions from block ciphers

Let E: K x{0,1}" — {0,1}" be a block cipher

9/19

Compression functions from block ciphers

Let E: K x{0,1}" — {0,1}" be a block cipher

Davies-Meyer

9/19

Compression functions from block ciphers

Let E: K x{0,1}" — {0,1}" be a block cipher

Davies-Meyer Miyaguchi-Preneel

9/19

Example of cryptographic hash function: SHA-256

» Structure: Merkle-Damgard
» Compression function: Davies-Meyer
» Bloc cipher: SHACAL-2

512-bit key

u

10/19

Message Authentication Codes (MACs)

11/19

Goal: message integrity

Generate tag
t — MDC(m)

1

Verify tag
V(m,t)=“yes”?

12 /19

Goal: message integrity

k k
>
Generate tag Verify tag
t — S(k,m) V(k,m,t)="yes”?

A MAC is a pair of algorithms (S, V) defined over (IC, M, T):
» SIKXM =T
» VKX MxT —={T,L}
» Consistency: V(k,m,S(k,m))=T

and such that

» It is hard to computer a valid pair (m, S(k, m)) without
knowing k

13 /19

File system protection

» At installation time

t; =S(k, F;) t, =S(k, F,)

t, =S(k, F,)
k derived from user password

» reboot to clean OS

» To check for virus file tampering/alteration:
» supply password

» any file modification will be detected

]

Qe
14/19

Block ciphers and message integrity

5/19

Block ciphers and message integrity

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D)
as follows:

» S(k,m) = E(k, m)

» V(k,m,t) = if m= D(k,t)
then return T
else return L

15/19

Block ciphers and message integrity

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D)
as follows:

» S(k,m) = E(k, m)

» V(k,m,t) = if m= D(k,t)
then return T
else return L

But: block ciphers can usually process only 128 or 256 bits

15/19

Block ciphers and message integrity

Let (E, D) be a block cipher. We build a MAC (S, V) using (E, D)
as follows:
» S(k,m) = E(k, m)
» V(k,m,t) = if m= D(k,t)
then return T
else return L

But: block ciphers can usually process only 128 or 256 bits

Our goal now: construct MACs for long messages

15/19

ECBC-MAC

® | ®

) e
» E: K£x{0,1}" — {0,1}" a block cipher
» ECBC-MAC : K2 x {0,1}* — {0,1}"

— the last encryption is crucial to avoid forgeries!!
Ex: 802.11i uses AES based ECBC-MAC

[m]

(details on the board)

=

DA
16/19

» E: K x{0,1}" — {0,1}" a block cipher
» P: KxN—{0,1}" any easy to compute function
» PMAC : K? x {0,1}* — {0,1}"

[m]

=

Qe
17/19

HMAC
MAC built from cryptographic hash functions

HMAC(k,m) = H(k ® OP||H(k @ IP||m))
IP, OP: publicly known padding constants

k XOR IP

k XOR OP

Ex: SSL, IPsec, SSH, ...

DA
18/19

