
Web security: web basics

Myrto Arapinis
School of Informatics

University of Edinburgh

February 8, 2016

1 / 23

Web applications

HTTP←−−−−→ ←−→

Client Server Database
(HTML, JavaScript) (PHP) (SQL)

2 / 23

URLs

Protocol://host/FilePath?argt1=value1&argt2=value2

I Protocol: protocol to access the resource (http, https,
ftp, . . .)

I host: name or IP address of the computer the resource is on

I FilePath: path to the resource on the host

I Resources can be static (file.html) or dynamic (do.php)

I URLs for dynamic content usually include arguments to pass
to the process (argt1, argt2)

3 / 23

HTTP requests

GET request

GET HTTP/1.1

Host: www.inf.ed.ac.uk

User-Agent: Mozilla/5.0

(X11; Ubuntu; Linux x86 64; rv:29.0)

Gecko/20100101 Firefox/29.0

Accept: text/html,application/xhtml+xml,

application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

4 / 23

HTTP responses

HTTP/1.1 200 OK

Server: Apache

Cache-control: private

Set-Cookie: JSESSIONID=B7E2479EC28064DF84DF4E3DBEE9C7DF;

Path=/

Content-Type: text/html;charset=UTF-8

Date: Wed, 18 Mar 2015 22:36:30 GMT

Connection: keep-alive

Set-Cookie: NSC xxx.fe.bd.vl-xd=ffffffffc3a035be45525d5f4f58455e445a4a423660;path=/

Content-Encoding: gzip

Content-Length: 4162

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/

xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<title> Informatics home | School of Informatics </title>

...

5 / 23

Web security: security goals

6 / 23

Security goals

Web applications should provide the same security guarantees as
those required for standalone applications

1. visiting evil.com should not infect my computer with
malware, or read and write files
Defenses: Javascript sandboxed, avoid bugs in browser code,
privilege separation, etc

2. visiting evil.com should not compromise my sessions with
gmail.com

Defenses: same-origin policy – each website is isolated from
all other websites

3. sensitive data stored on gmail.com should be protected

7 / 23

Threat model

Web attacker

I controls evil.com

I has valid SSL/TLS certificates for evil.com

I victim user visits evil.com

Network attacker

I controls the whole network: can intercept, craft, send
messages

A Web attacker is weaker than a Network attacker

8 / 23

OWASP TOP 10 Web security flaws (2013)

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an
interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter
into executing unintended commands or accessing data without proper authorization.

A1 – Injection

Application functions related to authentication and session management are often not
implemented correctly, allowing attackers to compromise passwords, keys, or session tokens, or
to exploit other implementation flaws to assume other users’ identities.

A2 – Broken
Authentication and

Session
Management

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser
without proper validation or escaping. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

A3 – Cross-Site
Scripting (XSS)

A direct object reference occurs when a developer exposes a reference to an internal
implementation object, such as a file, directory, or database key. Without an access control check
or other protection, attackers can manipulate these references to access unauthorized data.

A4 – Insecure
Direct Object

References

Good security requires having a secure configuration defined and deployed for the application,
frameworks, application server, web server, database server, and platform. Secure settings
should be defined, implemented, and maintained, as defaults are often insecure. Additionally,
software should be kept up to date.

A5 – Security
Misconfiguration

Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and
authentication credentials. Attackers may steal or modify such weakly protected data to conduct
credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as
encryption at rest or in transit, as well as special precautions when exchanged with the browser.

A6 – Sensitive Data
Exposure

Most web applications verify function level access rights before making that functionality visible
in the UI. However, applications need to perform the same access control checks on the server
when each function is accessed. If requests are not verified, attackers will be able to forge
requests in order to access functionality without proper authorization.

A7 – Missing
Function Level
Access Control

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the
victim’s session cookie and any other automatically included authentication information, to a
vulnerable web application. This allows the attacker to force the victim’s browser to generate
requests the vulnerable application thinks are legitimate requests from the victim.

A8 - Cross-Site
Request Forgery

(CSRF)

Components, such as libraries, frameworks, and other software modules, almost always run with
full privileges. If a vulnerable component is exploited, such an attack can facilitate serious data
loss or server takeover. Applications using components with known vulnerabilities may
undermine application defenses and enable a range of possible attacks and impacts.

A9 - Using
Components with

Known
Vulnerabilities

Web applications frequently redirect and forward users to other pages and websites, and use
untrusted data to determine the destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

A10 – Unvalidated
Redirects and

Forwards

OWASP Top 10 Application
Security Risks – 2013 T10

9 / 23

Injection attacks

10 / 23

Injection attack

OWASP definition

Injection flaws, such as SQL, OS, and LDAP injection occur when
untrusted data is sent to an interpreter as part of a command or
query. The attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing data without proper
authorization.

We are going to look at:

I command injection attacks

I SQL injection attacks

11 / 23

Command injection: a simple example

I Service that prints the result back from the linux program
whois

I Invoked via URL like (a form or Javascript constructs this
URL):

http://www.example.com/content.php?domain=example.php

I Possible implementation of content.php

<?php

if ($ GET[’domain’]) {
<? echo system("whois".$ GET[’domain’]); ?>

}
?>

12 / 23

Command injection: a simple example cont’d

I This script is subject to a command injection attack! We
could invoke it with the argument
www.example.com; rm -rf /;

http://www.example.com/content.php?domain=example.php;

rm -r /;

I Resulting in the following PHP

<? echo system("whois www.example.com; rm -rf/;"); ?>

13 / 23

Defense: input escaping

<? echo system("whois".escapeshellarg($ GET[’domain’])); ?>

escapeshellarg() adds single quotes around a string and quotes/escapes
any existing single quotes allowing you to pass a string directly to a shell
function and having it be treated as a single safe argument

GET INPUT Command executed

www.example.com whois ’www.example.com’

www.example.com; rm -rf/; whois ’www.example.com rm -rf/;’

14 / 23

Command injection recap

I Injection is generally caused when data and code share the
same channel:

I "whois" is the code and the filename the data
I But ’;’ allows attacker to include new command

I Defenses include input validation, input escaping and use of
a less powerful API

15 / 23

Web applications

HTTP←−−−−→ ←−→

Client Server Database
(HTML, JavaScript) (PHP) (SQL)

16 / 23

Databases

username password

alice 01234

bob 56789

charlie 43210

user accounts

I Web server connects to DB server:
I Web server sends queries or commands according to

incoming HTTP requests
I DB server returns associated values
I DB server can modify/update records

I SQL: commonly used database query language

17 / 23

SQL SELECT

Retrieve a set of records from DB:

SELECT field FROM table WHERE condition -- SQL

comment

returns the value(s) of the given field in the specified table, for all
records where condition is true

Example:

username password

alice 01234

bob 56789

charlie 43210

user accounts

SELECT password FROM user accounts WHERE

username=’alice’ returns the value 01234

18 / 23

SQL INSERT

Retrieve a set of records from DB:

INSERT INTO table VALUES record -- SQL comment

adds the value(s) a new record in the specified table
Example:

username password

alice 01234

bob 56789

charlie 43210

user accounts

−→

username password

alice 01234

bob 56789

charlie 43210

eve 98765

user accounts

INSERT INTO user accounts VALUES (’eve’, 98765)

19 / 23

Other SQL commands

I DROP TABLE table: deletes entire specified table

I Semicolons separate commands:
Example:

INSERT INTO user accounts VALUES (’eve’, 98765);

SELECT password FROM user accounts

WHERE username=’eve’
returns 98765

20 / 23

SQL injection: a simple example

The web server logs in a user if the user exists with the given
username and password.

login.php:

$conn = pg pconnect("dbname=user accounts");

$result = pg query(conn,

"SELECT * from user accounts

WHERE username = " ’.$ GET[’user’].’"

AND password = ’".$ GET[’pwd’]."’;");

if(pg query num($result) > 0) {
echo "Success";

user control panel redirect();

}

It sees if results exist and if so logs the user in and redirects them
to their user control panel

21 / 23

SQL injection: a simple example

Login as admin:

http://www.example.com/login.php?user=admin’--&pwd=f

pg query(conn,

"SELECT * from user accounts

WHERE username = ’admin’ -- ’ AND password = ’f’;");

Drop user accounts table:
http://www.example.com/login.php?user=admin’;

DROP TABLE user accounts --&pwd=f

pg query(conn,

"SELECT * from user accounts;

WHERE user = ’admin’; DROP TABLE user accounts;

-- ’ AND password = ’f’;");

22 / 23

SQL injection: a simple example

Login as admin:
http://www.example.com/login.php?user=admin’--&pwd=f

pg query(conn,

"SELECT * from user accounts

WHERE username = ’admin’ -- ’ AND password = ’f’;");

Drop user accounts table:
http://www.example.com/login.php?user=admin’;

DROP TABLE user accounts --&pwd=f

pg query(conn,

"SELECT * from user accounts;

WHERE user = ’admin’; DROP TABLE user accounts;

-- ’ AND password = ’f’;");

22 / 23

SQL injection: a simple example

Login as admin:
http://www.example.com/login.php?user=admin’--&pwd=f

pg query(conn,

"SELECT * from user accounts

WHERE username = ’admin’ -- ’ AND password = ’f’;");

Drop user accounts table:

http://www.example.com/login.php?user=admin’;

DROP TABLE user accounts --&pwd=f

pg query(conn,

"SELECT * from user accounts;

WHERE user = ’admin’; DROP TABLE user accounts;

-- ’ AND password = ’f’;");

22 / 23

SQL injection: a simple example

Login as admin:
http://www.example.com/login.php?user=admin’--&pwd=f

pg query(conn,

"SELECT * from user accounts

WHERE username = ’admin’ -- ’ AND password = ’f’;");

Drop user accounts table:
http://www.example.com/login.php?user=admin’;

DROP TABLE user accounts --&pwd=f

pg query(conn,

"SELECT * from user accounts;

WHERE user = ’admin’; DROP TABLE user accounts;

-- ’ AND password = ’f’;");

22 / 23

Defense: prepared statements

I Creates a template of the SQL query, in which data values are
substituted

I Ensures that the untrusted value is not interpreted as a
command

$result = pg query params(

conn,

SELECT * from user accounts WHERE username = $1

AND password = $2,

array($ GET[’user’], $ GET[’pwd’]));

23 / 23

