Cryptography II: Hash Functions Computer Security Lecture 4

David Aspinall

School of Informatics University of Edinburgh

20th January 2011

Outline

Varieties of hash function

Properties of hash functions

Building hash functions

Standard hash functions

Conclusion

Outline

Varieties of hash function

Properties of hash functions

Building hash functions

Standard hash functions

Conclusion

Hash function basics

A hash function is a computationally efficient function h: {0, 1}* → {0, 1}^k which compresses any arbitrary length binary string to a fixed size k-length binary hash value (or hash for short).

Hash function basics

- A hash function is a computationally efficient function h: {0, 1}* → {0, 1}^k which compresses any arbitrary length binary string to a fixed size k-length binary hash value (or hash for short).
- A good hash function distributes values uniformly: the probability that a randomly chosen string s gets mapped to a particular hash y is ¹/_{2^k}

Hash function basics

- A hash function is a computationally efficient function h: {0, 1}* → {0, 1}^k which compresses any arbitrary length binary string to a fixed size k-length binary hash value (or hash for short).
- A good hash function distributes values uniformly: the probability that a randomly chosen string s gets mapped to a particular hash y is ¹/_{2^k}
- A cryptographic hash function must satisfy some further properties, e.g.:
 - 1. it should be difficult to invert;
 - 2. it should be difficult to find a second input that hashes to the same value as another input;
 - 3. it should be difficult to find any two inputs that hash to the same value.

depending on the application.

Hash function uses and non-uses

- ▶ **Integrity**: Alice sends m, h(m) (or alternatively, $E_k(m||h(m))$) to Bob.
- Protects against *malicious* modification.
- Confidentiality: An Authentication Server stores a user's password p as h(p).
- Other uses: confirming knowledge (e.g. password) without revealing, deriving keys, pseudo-random numbers. A piece of "cryptographic glue".
- On their own, hash functions don't protect against
 - Malicious repetition of data, e.g., repeating a £100 bank deposit. (Ex. how could you do that?)
 - Dishonest repudiation, e.g., denying sending a hashed email message with a correct hash.
- Nor do they support message recovery, i.e., recovering the original message after tampering

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is **preimage resistant** if given a hash value *y*, it is computationally infeasible to find an *x* such that h(x) = y.

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is **preimage resistant** if given a hash value *y*, it is computationally infeasible to find an *x* such that h(x) = y.

2nd Preimage Resistance (Weak Collision Resistance)

h is **2nd preimage resistant** if given a value x_1 and its hash $h(x_1)$, it is computationally infeasible to find another x_2 such that $h(x_2) = h(x_1)$.

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is **preimage resistant** if given a hash value *y*, it is computationally infeasible to find an *x* such that h(x) = y.

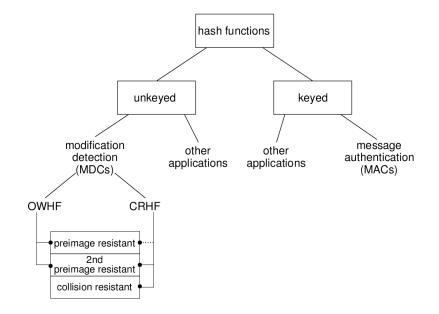
2nd Preimage Resistance (Weak Collision Resistance)

h is **2nd preimage resistant** if given a value x_1 and its hash $h(x_1)$, it is computationally infeasible to find another x_2 such that $h(x_2) = h(x_1)$.

(Strong) Collision Resistance

h is **collision resistant** if it is computationally infeasible to find *any* two inputs x_1 and x_2 such that $h(x_1) = h(x_2)$.

Hash function Classification [HAC]



Modification Detection Codes

- The main application of hash functions is as Modification Detection Codes to provide data integrity.
- A hash h(x) provides a short message digest, a "fingerprint" of some possibly large data x. If the data is altered, the digest should become invalid.
 - This allows the data (but not the hash!) to be stored in an unsecured place.
 - If x is altered to x', we hope h(x) ≠ h(x'), so it can be detected.
- This is useful especially where malicious alteration is a concern, e.g., software distribution.
- Ordinary hash functions such as CRC-checkers produce *checksums* which are not 2nd preimage resistant: an attacker could produce a hacked version of a software product and ensure the checksum remained the same.

A one-way hash function (OWHF) is a hash function that satisfies preimage resistance and 2nd-preimage resistance.

- A one-way hash function (OWHF) is a hash function that satisfies preimage resistance and 2nd-preimage resistance.
- A collision resistant hash function (CRHF) is a hash function that satisfies 2nd-preimage resistance and collision resistance.

- A one-way hash function (OWHF) is a hash function that satisfies preimage resistance and 2nd-preimage resistance.
- A collision resistant hash function (CRHF) is a hash function that satisfies 2nd-preimage resistance and collision resistance.
- In practice, CRHF usually satisfies preimage resistance.

- A one-way hash function (OWHF) is a hash function that satisfies preimage resistance and 2nd-preimage resistance.
- A collision resistant hash function (CRHF) is a hash function that satisfies 2nd-preimage resistance and collision resistance.
- In practice, CRHF usually satisfies preimage resistance.
- CRHFs are harder to construct than OWHFs and have longer length hash values.

- A one-way hash function (OWHF) is a hash function that satisfies preimage resistance and 2nd-preimage resistance.
- A collision resistant hash function (CRHF) is a hash function that satisfies 2nd-preimage resistance and collision resistance.
- In practice, CRHF usually satisfies preimage resistance.
- CRHFs are harder to construct than OWHFs and have longer length hash values.
- Choice between OWHF and CRHF depends on application:

- A one-way hash function (OWHF) is a hash function that satisfies preimage resistance and 2nd-preimage resistance.
- A collision resistant hash function (CRHF) is a hash function that satisfies 2nd-preimage resistance and collision resistance.
- In practice, CRHF usually satisfies preimage resistance.
- CRHFs are harder to construct than OWHFs and have longer length hash values.
- Choice between OWHF and CRHF depends on application:
 - If attacker can control input, CRHF required.

- A one-way hash function (OWHF) is a hash function that satisfies preimage resistance and 2nd-preimage resistance.
- A collision resistant hash function (CRHF) is a hash function that satisfies 2nd-preimage resistance and collision resistance.
- In practice, CRHF usually satisfies preimage resistance.
- CRHFs are harder to construct than OWHFs and have longer length hash values.
- Choice between OWHF and CRHF depends on application:
 - If attacker can control input, CRHF required.
 - Otherwise OWHF suffices

- A one-way hash function (OWHF) is a hash function that satisfies preimage resistance and 2nd-preimage resistance.
- A collision resistant hash function (CRHF) is a hash function that satisfies 2nd-preimage resistance and collision resistance.
- In practice, CRHF usually satisfies preimage resistance.
- CRHFs are harder to construct than OWHFs and have longer length hash values.
- Choice between OWHF and CRHF depends on application:
 - If attacker can control input, CRHF required.
 - Otherwise OWHF suffices
- **Ex**: which is needed for password file security?

Message Authentication Codes

- Message Authentication Codes are keyed hash functions, indexed with a secret key.
 - As well as data integrity, they provide data-origin authentication, because it is assumed that apart from the recipient, only the sender knows the secret key necessary to compute the MAC.

• A MAC is a key-indexed family of hash functions, $\{h_k \mid k \in \mathcal{K}\}$. MACs must satisfy a *computation* resistance property.

Computation Resistance

Given a set of pairs $(x_i, h_k(x_i))$ it is computationally infeasible to find any other text-MAC pair $(x, h_k(x))$ for a new input $x \neq x_i$.

Outline

Varieties of hash function

Properties of hash functions

Building hash functions

Standard hash functions

Conclusion

 Collision resistance implies 2nd-preimage resistance.

- Collision resistance implies 2nd-preimage resistance.
- Sketch proof [HAC]:

- Collision resistance implies 2nd-preimage resistance.
- Sketch proof [HAC]:
 - Let *h* be CR, but suppose it is not 2nd PI.

- Collision resistance implies 2nd-preimage resistance.
- Sketch proof [HAC]:
 - Let h be CR, but suppose it is not 2nd PI.
 - Fix some input x; compute h(x).

- Collision resistance implies 2nd-preimage resistance.
- Sketch proof [HAC]:
 - Let h be CR, but suppose it is not 2nd PI.
 - Fix some input x; compute h(x).
 - Since not 2nd PI, we can find an $x' \neq x$ with h(x') = h(x).

- Collision resistance implies 2nd-preimage resistance.
- Sketch proof [HAC]:
 - Let h be CR, but suppose it is not 2nd PI.
 - Fix some input x; compute h(x).
 - Since not 2nd PI, we can find an $x' \neq x$ with h(x') = h(x).
 - But now (x, x') is a collision, so h cannot be CR.

- Collision resistance implies 2nd-preimage resistance.
- Sketch proof [HAC]:
 - Let h be CR, but suppose it is not 2nd PI.
 - Fix some input x; compute h(x).
 - Since not 2nd PI, we can find an $x' \neq x$ with h(x') = h(x).
 - But now (x, x') is a collision, so h cannot be CR.
- This and similar arguments (e.g., see Smart) can be made precise using the Random Oracle Model.

- Collision resistance implies 2nd-preimage resistance.
- Sketch proof [HAC]:
 - Let h be CR, but suppose it is not 2nd PI.
 - Fix some input x; compute h(x).
 - Since not 2nd PI, we can find an $x' \neq x$ with h(x') = h(x).
 - But now (x, x') is a collision, so h cannot be CR.
- This and similar arguments (e.g., see Smart) can be made precise using the Random Oracle Model.

Collision resistance does not imply preimage resistance

- Collision resistance implies 2nd-preimage resistance.
- Sketch proof [HAC]:
 - Let h be CR, but suppose it is not 2nd PI.
 - Fix some input x; compute h(x).
 - Since not 2nd PI, we can find an $x' \neq x$ with h(x') = h(x).
 - But now (x, x') is a collision, so h cannot be CR.
- This and similar arguments (e.g., see Smart) can be made precise using the Random Oracle Model.

Collision resistance does not imply preimage resistance

Contrived counterexample:

$$h(x) = \begin{cases} 1 \mid \mid x & \text{if } x \text{ has length } n \\ 0 \mid \mid g(x) & \text{otherwise} \end{cases}$$

To satisfy (strong) collision resistance, a hash function must be large enough to withstand a birthday attack. (or square root attack).

- To satisfy (strong) collision resistance, a hash function must be large enough to withstand a birthday attack. (or square root attack).
- Drawing random elements with replacement from a set of k elements, a repeat is likely after about \sqrt{k} selections.

- To satisfy (strong) collision resistance, a hash function must be large enough to withstand a birthday attack. (or square root attack).
- Drawing random elements with replacement from a set of k elements, a repeat is likely after about \sqrt{k} selections.
- Mallory has two contracts, one for £1000, the other £100,000, to be signed with a 64-bit hash. He makes 2³² minor variations in each (e.g spaces/control chars), and finds a pair with the same hash. Later claims second document was signed, not first.

- To satisfy (strong) collision resistance, a hash function must be large enough to withstand a birthday attack. (or square root attack).
- Drawing random elements with replacement from a set of k elements, a repeat is likely after about \sqrt{k} selections.
- Mallory has two contracts, one for £1000, the other £100,000, to be signed with a 64-bit hash. He makes 2³² minor variations in each (e.g spaces/control chars), and finds a pair with the same hash. Later claims second document was signed, not first.
- An *n*-bit unkeyed hash function has **ideal security** if producing a preimage or 2nd-preimage each requires 2ⁿ operations, and producing a collision requires 2^{n/2} operations.

Outline

Varieties of hash function

Properties of hash functions

Building hash functions

Standard hash functions

Conclusion

Multiplication of large primes is a OWF

- Multiplication of large primes is a OWF
 - for appropriate choices of p and q, f(p, q) = pq is a one-way function since integer factorization [FACTORING] is difficult.

- Multiplication of large primes is a OWF
 - for appropriate choices of p and q, f(p, q) = pq is a one-way function since integer factorization [FACTORING] is difficult.
 - Not feasible to turn into an MD function, though. (Ex: why?)

- Multiplication of large primes is a OWF
 - for appropriate choices of p and q, f(p, q) = pq is a one-way function since integer factorization [FACTORING] is difficult.
 - Not feasible to turn into an MD function, though. (Ex: why?)
- Exponentiation in finite fields is a OWF

Multiplication of large primes is a OWF

- for appropriate choices of p and q, f(p, q) = pq is a one-way function since integer factorization [FACTORING] is difficult.
- Not feasible to turn into an MD function, though. (Ex: why?)

Exponentiation in finite fields is a OWF

for appropriate primes p and numbers α,
 f(x) = α^x mod p is a one-way function, since the discrete logarithm problem [DLP] is difficult.

Multiplication of large primes is a OWF

- for appropriate choices of p and q, f(p, q) = pq is a one-way function since integer factorization [FACTORING] is difficult.
- Not feasible to turn into an MD function, though. (Ex: why?)

Exponentiation in finite fields is a OWF

- for appropriate primes p and numbers α,
 f(x) = α^x mod p is a one-way function, since the discrete logarithm problem [DLP] is difficult.
- Main problem with turning this into a realistic MD function is that it's too slow to calculate.

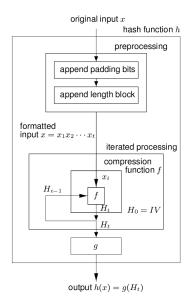
OWFs from block ciphers

- A block cipher is an encryption scheme which works on fixed length blocks of input text.
- We can construct a OWF from a block cipher such as DES, which is treated essentially as a random function:

$$h(x) = E_k(x) \oplus x$$

for fixed key k. This can be turned into a MD function, by iteration...

Iterated hash function construction [HAC]



An iterated hash function is constructed using a compression function f which converts a t + n-bit input into an n-bit output.

- An iterated hash function is constructed using a compression function f which converts a t + n-bit input into an n-bit output.
 - The input x is split into blocks x₁x₂,...x_k of size t, appending padding bits and a *length block* indicating the original length.

$$H_0 = IV$$
 $H_i = f(H_{i-1}, x_i), \ 1 \le i \le k$ $h(x) = g(H_k).$

- An iterated hash function is constructed using a compression function f which converts a t + n-bit input into an n-bit output.
 - The input x is split into blocks x₁x₂,...x_k of size t, appending padding bits and a *length block* indicating the original length.

$$H_0 = IV$$
 $H_i = f(H_{i-1}, x_i), \ 1 \le i \le k$ $h(x) = g(H_k).$

 IV: an initialization vector; g: an output transformation (often identity).

- An iterated hash function is constructed using a compression function f which converts a t + n-bit input into an n-bit output.
 - The input x is split into blocks x₁x₂,...x_k of size t, appending padding bits and a *length block* indicating the original length.

$$H_0 = IV$$
 $H_i = f(H_{i-1}, x_i), \ 1 \le i \le k$ $h(x) = g(H_k).$

- IV: an initialization vector; g: an output transformation (often identity).
- This is Merkle's meta-method

- An iterated hash function is constructed using a compression function f which converts a t + n-bit input into an n-bit output.
 - The input x is split into blocks x₁x₂,...x_k of size t, appending padding bits and a *length block* indicating the original length.

 $H_0 = IV$ $H_i = f(H_{i-1}, x_i), \ 1 \le i \le k$ $h(x) = g(H_k).$

- IV: an initialization vector; g: an output transformation (often identity).
- This is Merkle's meta-method
 - Fact: any CR compression function f can be extended to a CRHF by the above construction, and

- An iterated hash function is constructed using a compression function f which converts a t + n-bit input into an n-bit output.
 - The input x is split into blocks x₁x₂,...x_k of size t, appending padding bits and a *length block* indicating the original length.

 $H_0 = IV$ $H_i = f(H_{i-1}, x_i), \ 1 \le i \le k$ $h(x) = g(H_k).$

 IV: an initialization vector; g: an output transformation (often identity).

This is Merkle's meta-method

- Fact: any CR compression function f can be extended to a CRHF by the above construction, and
- padding: the last block with 0s, adding a final extra block x_k which holds right-justified binary representation of length(x) (this padding is called **MD strengthening**).

- An iterated hash function is constructed using a compression function f which converts a t + n-bit input into an n-bit output.
 - The input x is split into blocks x₁x₂,...x_k of size t, appending padding bits and a *length block* indicating the original length.

 $H_0 = IV$ $H_i = f(H_{i-1}, x_i), \ 1 \le i \le k$ $h(x) = g(H_k).$

 IV: an initialization vector; g: an output transformation (often identity).

This is Merkle's meta-method

- Fact: any CR compression function f can be extended to a CRHF by the above construction, and
- padding: the last block with 0s, adding a final extra block x_k which holds right-justified binary representation of length(x) (this padding is called **MD strengthening**).
- Set $IV = 0^n$, g = id, and compute $H_i = f(H_{i-1}, x_i)$.

Outline

Varieties of hash function

Properties of hash functions

Building hash functions

Standard hash functions

Conclusion

MD5

- Improvement of MD4; MD4 and MD5 designed by Ron Rivest.
 - Text processed in 512-bit blocks, as 16 32-bit sub-blocks. Output is four 32-bit blocks, giving a 128-bit hash. Message padded with 1 and then 0s until last block is 448 bits long, then a 64-bit length.

MD5

- Improvement of MD4; MD4 and MD5 designed by Ron Rivest.
 - Text processed in 512-bit blocks, as 16 32-bit sub-blocks. Output is four 32-bit blocks, giving a 128-bit hash. Message padded with 1 and then 0s until last block is 448 bits long, then a 64-bit length.
 - Main loop has four rounds, chaining 4 variables a, b, c, d. Each round uses a different operation (with a similar structure) 16 times, which computes a new value of one of the four variables using a non-linear function of the other three, chosen to preserve randomness properties of the input.

MD5

- Improvement of MD4; MD4 and MD5 designed by Ron Rivest.
 - Text processed in 512-bit blocks, as 16 32-bit sub-blocks. Output is four 32-bit blocks, giving a 128-bit hash. Message padded with 1 and then 0s until last block is 448 bits long, then a 64-bit length.
 - Main loop has four rounds, chaining 4 variables a, b, c, d. Each round uses a different operation (with a similar structure) 16 times, which computes a new value of one of the four variables using a non-linear function of the other three, chosen to preserve randomness properties of the input.
 - For example, the first round uses the operation:

$$a = (F(b, c, d) + x_i + t_j) <<< s$$

$$F(b, c, d) = (b \land c) \lor (\neg b \land d)$$

where <<< s is left-circular shift of s bits, x_i is the *i*th sub-block of the message. Constants t_j are the integer part of $2^{32} * \operatorname{abs}(\sin(i+1))$ where $0 \le i \le 63$ is in radians (for the 4 * 16 steps).

SHA-1 (160)

 Secure Hash Algorithm (rev 1) is a NIST standard [FIPS 180] also based on MD4. Five 32-bit blocks are chained; output is 160 bits. Message blocks 512 bits. Padding like MD5.

SHA-1 (160)

- Secure Hash Algorithm (rev 1) is a NIST standard [FIPS 180] also based on MD4. Five 32-bit blocks are chained; output is 160 bits. Message blocks 512 bits. Padding like MD5.
 - Main loop has four rounds of 20 operations, chaining 5 variables a, b, c, d, e, f. Five IVs and four constants are used:
 - $\begin{array}{l} A = 0 \times 67452301 \\ B = 0 \times EFCDAB89 \\ C = 0 \times 98BADCFE \\ D = 0 \times 10325476 \\ F = 0 \times C3D2E1F0 \end{array} \begin{array}{l} K_0 = 0 \times 5A827999 \\ K_1 = 0 \times 6ED9EBA1 \\ K_2 = 0 \times 8F1BBCDC \\ K_3 = 0 \times CA62C1D6 \end{array}$

SHA-1 (160)

- Secure Hash Algorithm (rev 1) is a NIST standard [FIPS 180] also based on MD4. Five 32-bit blocks are chained; output is 160 bits. Message blocks 512 bits. Padding like MD5.
 - Main loop has four rounds of 20 operations, chaining 5 variables a, b, c, d, e, f. Five IVs and four constants are used:
 - The message block undergoes an *expansion* transformation from 16*32-bit words x_i to 80*32-bit words, w_i by:

$$\begin{array}{ll} w_i &=& x_i, & \text{for } 0 \leq i \leq 15. \\ w_i &=& (w_{i-3} \oplus w_{i-8} \oplus & \\ & & w_{i-14} \oplus w_{i-16}) <<<1, & \text{for } 16 \leq i \leq 79. \end{array}$$

80 steps in main loop, changing Ks and Fs 4 times

80 steps in main loop, changing Ks and Fs 4 times

80 steps in main loop, changing Ks and Fs 4 times

for(
$$i = 0; i < 80; i++)$$
 {
 tmp = (a <<< 5) + F_j(b, c, d) + e + w_i + K_j;
 e = d;
 c = b <<< 30;
 b = a;
 a = tmp;
}

Each F_j combines three of the five variables:

$$\begin{array}{rcl} F_0(X,Y,Z) &=& (X \wedge Y) \vee (\neg X \wedge Z) \\ F_1(X,Y,Z) &=& X \oplus Y \oplus Z \\ F_2(X,Y,Z) &=& (X \wedge Y) \vee (X \wedge Z) \vee (Y \wedge Z) \\ F_3(X,Y,Z) &=& X \oplus Y \oplus Z \end{array}$$

80 steps in main loop, changing Ks and Fs 4 times

for(
$$i = 0; i < 80; i++)$$
 {
 tmp = (a <<< 5) + F_j(b, c, d) + e + w_i + K_j;
 e = d;
 c = b <<< 30;
 b = a;
 a = tmp;
}

Each F_j combines three of the five variables:

$$\begin{array}{rcl} F_0(X,Y,Z) &=& (X \wedge Y) \vee (\neg X \wedge Z) \\ F_1(X,Y,Z) &=& X \oplus Y \oplus Z \\ F_2(X,Y,Z) &=& (X \wedge Y) \vee (X \wedge Z) \vee (Y \wedge Z) \\ F_3(X,Y,Z) &=& X \oplus Y \oplus Z \end{array}$$

 Finally a, b, c, d, e are added to tmp (all addition is modulo 2³²).

80 steps in main loop, changing Ks and Fs 4 times

for(
$$i = 0; i < 80; i++)$$
 {
 tmp = (a <<< 5) + F_j(b, c, d) + e + w_i + K_j;
 e = d;
 c = b <<< 30;
 b = a;
 a = tmp;
}

Each F_j combines three of the five variables:

$$\begin{array}{rcl} F_0(X,Y,Z) &=& (X \wedge Y) \vee (\neg X \wedge Z) \\ F_1(X,Y,Z) &=& X \oplus Y \oplus Z \\ F_2(X,Y,Z) &=& (X \wedge Y) \vee (X \wedge Z) \vee (Y \wedge Z) \\ F_3(X,Y,Z) &=& X \oplus Y \oplus Z \end{array}$$

- Finally a, b, c, d, e are added to tmp (all addition is modulo 2³²).
- Exercise: implement SHA-1 in your favourite language following this. Test against sha1sum.

Outline

Varieties of hash function

Properties of hash functions

Building hash functions

Standard hash functions

Conclusion

Current Status

- Hash functions are versatile and powerful primitive.
- However, difficult to construct and less researched than encryption schemes.
 - ideal hash function is a "random mapping" where knowledge of previous results doesn't give knowledge of another.
 - practical fast iterative hash constructions fail this!
 - MD4 (1998), MD5 (1993/2005), SHA-1 (2005) are now all considered broken.
- The US National Institute of Standards and Technology (NIST) has since developed a set of newer hash functions.
 - Formerly called SHA-2, they are denoted by their output size: SHA-256, SHA-384, SHA-512.
 - However, since they are based upon the same SHA construction, they are not long-term solutions
 - NIST is currently running a SHA-3 competition to determine the successor.

References

beamericon AqckJ. Menezes, P. C. Van Oorschot, S. A. Vanstone, eds. Handbook of Applied Cryptography.

> CRC Press, 1997. Online: http://www.cacr.math.uwaterloo.ca/hac.

beamericonthetils Ferguson and Bruce Schneier. *Practical Cryptography*. John Wiley & Sons, 2003.

beamericon boolegies R Stinson. Cryptography Theory and Practice. CRC Press, second edition edition, 2002.

beamericonthigel Smart. Cryptography: An Introduction.

McGraw-Hill, 2003. Third edition online: http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

One of: Ch 9 of HAC (9.1–9.2); Ch. 10 of Smart 3rd Ed; 11.1–11.3 of Gollmann.