
Cryptography III:
Symmetric Ciphers

Computer Security Lecture 7

Mike Just1

School of Informatics
University of Edinburgh

28th January 2010

1Based on original lecture notes by David Aspinall



Outline

Stream ciphers

Block ciphers

DES and Rijndael

Summary



Stream ciphers and block ciphers

Symmetric-key encryption schemes are often characterised as
stream ciphers or block ciphers, but the distinction can be fuzzy.

◮ A stream cipher is an encryption scheme which treats the
plaintext symbol-by-symbol (e.g., by bit or byte);

◮ security in a stream cipher lies in a changing keystream

rather than the encryption function, which may be simple.

◮ A block cipher is an encryption scheme which breaks up the
plaintext message into blocks of a fixed length (e.g.,
128 bits), and encrypts one block at a time;

◮ the block encryption function is a complex function
parameterised on a fixed size key.



Outline

Stream ciphers

Block ciphers

DES and Rijndael

Summary



Stream ciphers

Typically, M = C = A and a stream of symbols

m1 m2 m3 · · ·

is encrypted using a keystream

e1 e2 e3 · · ·

to generate
Ee1(m1) Ee2(m2) Ee3(m3) · · ·

Stream ciphers may be

◮ synchronous (keystream generated independently of the
plaintext and ciphertext), or

◮ self-synchronizing (the keystream is generated as a function
of the key and a fixed amount of previous ciphertext).



Vernam cipher and one-time pad

◮ The Vernam cipher is a stream cipher defined on the
alphabet A = {0, 1}, with a key stream also of binary digits.
Each symbol mi in the message is encoded using the
corresponding symbol ki of the key stream, using exclusive-or:

ci = mi ⊕ ki .

Because (a ⊕ b) ⊕ b = a, the decryption operation is
identical:

mi = ci ⊕ ki .



Vernam cipher and one-time pad

◮ The Vernam cipher is a stream cipher defined on the
alphabet A = {0, 1}, with a key stream also of binary digits.
Each symbol mi in the message is encoded using the
corresponding symbol ki of the key stream, using exclusive-or:

ci = mi ⊕ ki .

Because (a ⊕ b) ⊕ b = a, the decryption operation is
identical:

mi = ci ⊕ ki .

If the key string is randomly chosen, and never reused, then this
cipher is called a one-time pad. Claude Shannon proved that this
cipher is unconditionally secure. Unfortunately, to guarantee this,
it requires a true random source for key bits (hard to come by),
and a key stream as long as the message. This makes it
impractical for most applications. It used to be used for high
security communications between Washington and Moscow.



Feedback Shift Registers

◮ More practical than the one-time pad would be to use a
pseudorandom keystream, which is seeded with a much
shorter key. Feedback shift registers (FSRs) are the basic
component of many keystream generators, used to produce
pseudorandom bit streams.

◮ An FSR of length n consists of n 1-bit register stages
connected together, whose contents ~s are inputs to a boolean
function f . At each tick, the contents are shifted right, and f

calculates the feedback digit.

f (sj−1, sj−2, . . . sj−n)

stage
n − 1

stage
n − 2

stage
1

stage
0

Output

◮ If the initial state is [sn−1, . . . , s0], then the output sequence
s0, s1, . . . is determined by the equation:
sj = f (sj−1, sj−2, . . . sj−n) for j ≥ n.



Linear Feedback Shift Registers

◮ In a n-length LFSR, the feedback function f is set by a
n-degree connection polynomial C with binary coefficients ci

C (X ) = 1 + c1X + c2X
2 . . . + cnX

n

this determines the feedback function, as:

sj = (c1sj−1 + c2sj−2 + · · · + cnsj−n) mod 2 for j ≥ n.



Linear Feedback Shift Registers

◮ In a n-length LFSR, the feedback function f is set by a
n-degree connection polynomial C with binary coefficients ci

C (X ) = 1 + c1X + c2X
2 . . . + cnX

n

this determines the feedback function, as:

sj = (c1sj−1 + c2sj−2 + · · · + cnsj−n) mod 2 for j ≥ n.

◮ LFSRs have an elegant algebraic theory and can be
constructed to produce sequences with good properties: a
large period (the maximum, 2n − 1), good statistical

randomness properties, and a large linear complexity (a
statistical “effectiveness” measure).



Linear Feedback Shift Registers

◮ In a n-length LFSR, the feedback function f is set by a
n-degree connection polynomial C with binary coefficients ci

C (X ) = 1 + c1X + c2X
2 . . . + cnX

n

this determines the feedback function, as:

sj = (c1sj−1 + c2sj−2 + · · · + cnsj−n) mod 2 for j ≥ n.

◮ LFSRs have an elegant algebraic theory and can be
constructed to produce sequences with good properties: a
large period (the maximum, 2n − 1), good statistical

randomness properties, and a large linear complexity (a
statistical “effectiveness” measure).

◮ However, LFSRs are insecure. To break, find the length n,
and then use a known-plaintext attack of length 2n.



Linear Feedback Shift Registers

◮ In a n-length LFSR, the feedback function f is set by a
n-degree connection polynomial C with binary coefficients ci

C (X ) = 1 + c1X + c2X
2 . . . + cnX

n

this determines the feedback function, as:

sj = (c1sj−1 + c2sj−2 + · · · + cnsj−n) mod 2 for j ≥ n.

◮ LFSRs have an elegant algebraic theory and can be
constructed to produce sequences with good properties: a
large period (the maximum, 2n − 1), good statistical

randomness properties, and a large linear complexity (a
statistical “effectiveness” measure).

◮ However, LFSRs are insecure. To break, find the length n,
and then use a known-plaintext attack of length 2n.

◮ In practice, some controlled non-linearity is added by either
non-linear filtering or composition of LFSRs, or
LFSR-controlled clocking.



Outline

Stream ciphers

Block ciphers

DES and Rijndael

Summary



Simple substitution ciphers

A simple substitution cipher is a block cipher for arbitrary block
length t. It swaps each letter for another letter, using a
permutation of the alphabet.

◮ Let A be an alphabet, M be the set of strings over A of
length t, and K be the set of all permutations on A.



Simple substitution ciphers

A simple substitution cipher is a block cipher for arbitrary block
length t. It swaps each letter for another letter, using a
permutation of the alphabet.

◮ Let A be an alphabet, M be the set of strings over A of
length t, and K be the set of all permutations on A.

◮ For each e ∈ K define Ee by applying the permutation e to
each letter in the plaintext block:

Ee(m) = e(m1)e(m2) · · · e(mt) = c

where m ∈ M and m = m1m2 · · ·mt .



Simple substitution ciphers

A simple substitution cipher is a block cipher for arbitrary block
length t. It swaps each letter for another letter, using a
permutation of the alphabet.

◮ Let A be an alphabet, M be the set of strings over A of
length t, and K be the set of all permutations on A.

◮ For each e ∈ K define Ee by applying the permutation e to
each letter in the plaintext block:

Ee(m) = e(m1)e(m2) · · · e(mt) = c

where m ∈ M and m = m1m2 · · ·mt .



Simple substitution ciphers

A simple substitution cipher is a block cipher for arbitrary block
length t. It swaps each letter for another letter, using a
permutation of the alphabet.

◮ Let A be an alphabet, M be the set of strings over A of
length t, and K be the set of all permutations on A.

◮ For each e ∈ K define Ee by applying the permutation e to
each letter in the plaintext block:

Ee(m) = e(m1)e(m2) · · · e(mt) = c

where m ∈ M and m = m1m2 · · ·mt .
For each d ∈ K we define Ed in exactly the same way,

Dd(c) = d(c1)d(c2) · · · d(ct).

◮ Key pairs are permutations and their inverses, so d = e−1, and

Dd(c) = e−1(c1)e
−1(c2) · · · e

−1(ct) = m1m2 · · ·mt = m.



Simple substitution ciphers, cont’d

◮ The Caesar cipher is a simple substitution cipher which
replaces A → D, B → E, C → F, . . . , X → A, Y → B, Z → C.



Simple substitution ciphers, cont’d

◮ The Caesar cipher is a simple substitution cipher which
replaces A → D, B → E, C → F, . . . , X → A, Y → B, Z → C.

◮ The ROT-13 transformation provided in Usenet news readers
is similar, but replaces each letter character c with the
character (c + 13) mod 26. This permutation is its own
inverse.



Simple substitution ciphers, cont’d

◮ The Caesar cipher is a simple substitution cipher which
replaces A → D, B → E, C → F, . . . , X → A, Y → B, Z → C.

◮ The ROT-13 transformation provided in Usenet news readers
is similar, but replaces each letter character c with the
character (c + 13) mod 26. This permutation is its own
inverse.



Simple substitution ciphers, cont’d

◮ The Caesar cipher is a simple substitution cipher which
replaces A → D, B → E, C → F, . . . , X → A, Y → B, Z → C.

◮ The ROT-13 transformation provided in Usenet news readers
is similar, but replaces each letter character c with the
character (c + 13) mod 26. This permutation is its own
inverse.

Simple substitution ciphers are insecure, even when the key space
is large. The reason is that the distribution of letter frequencies is
preserved in the ciphertext, which allows easy cryptanalysis with a
fairly small amount of ciphertext and known properties of plain
text (e.g., the relative frequencies of letters in English text).



Simple substitution ciphers, cont’d

◮ The Caesar cipher is a simple substitution cipher which
replaces A → D, B → E, C → F, . . . , X → A, Y → B, Z → C.

◮ The ROT-13 transformation provided in Usenet news readers
is similar, but replaces each letter character c with the
character (c + 13) mod 26. This permutation is its own
inverse.

Simple substitution ciphers are insecure, even when the key space
is large. The reason is that the distribution of letter frequencies is
preserved in the ciphertext, which allows easy cryptanalysis with a
fairly small amount of ciphertext and known properties of plain
text (e.g., the relative frequencies of letters in English text).
This emphasises what should be an obvious point: a large

keyspace does not guarantee a strong cipher. For the alphabet
A-Z, the size of the key space for this cipher is 26! ≈ 288, large
enough to prevent brute force attacks by today’s standards. But
the cipher is easy to break.



Polyalphabetic substitution ciphers

A polyalphabetic substitution cipher is a block cipher with block
length t. Instead of a single permutation, it uses a set of t

permutations, and substitutes each letter using a permutation
corresponding to its position in the block.



Polyalphabetic substitution ciphers

A polyalphabetic substitution cipher is a block cipher with block
length t. Instead of a single permutation, it uses a set of t

permutations, and substitutes each letter using a permutation
corresponding to its position in the block.

◮ Let A and M be as before. Let K be the set of all t-tuples
(p1, . . . , pt) where each pi is a permutation on A.



Polyalphabetic substitution ciphers

A polyalphabetic substitution cipher is a block cipher with block
length t. Instead of a single permutation, it uses a set of t

permutations, and substitutes each letter using a permutation
corresponding to its position in the block.

◮ Let A and M be as before. Let K be the set of all t-tuples
(p1, . . . , pt) where each pi is a permutation on A.

◮ For each e = (p1, . . . , pn) ∈ K define Ee by applying the
permutation pi to the ith letter in the plaintext block:

Ee(m) = p1(m1)p2(m2) · · · pt(mt) = c

where m = m1m2 · · ·mt .



Polyalphabetic substitution ciphers

A polyalphabetic substitution cipher is a block cipher with block
length t. Instead of a single permutation, it uses a set of t

permutations, and substitutes each letter using a permutation
corresponding to its position in the block.

◮ Let A and M be as before. Let K be the set of all t-tuples
(p1, . . . , pt) where each pi is a permutation on A.

◮ For each e = (p1, . . . , pn) ∈ K define Ee by applying the
permutation pi to the ith letter in the plaintext block:

Ee(m) = p1(m1)p2(m2) · · · pt(mt) = c

where m = m1m2 · · ·mt .

◮ The corresponding decryption key is d = (p−1
1 , . . . , p−1

t ).



Polyalphabetic substitution ciphers, cont’d

◮ The Vigenère cipher has a block-length of 3, and uses the
permutations e = (p1, p2, p3) where p1 rotates each letter of
the alphabet three places to the right, p2 rotates seven
positions, and p3 ten positions
(e may be represented as the word DHK). For example:



Polyalphabetic substitution ciphers, cont’d

◮ The Vigenère cipher has a block-length of 3, and uses the
permutations e = (p1, p2, p3) where p1 rotates each letter of
the alphabet three places to the right, p2 rotates seven
positions, and p3 ten positions
(e may be represented as the word DHK). For example:

m = COM EON EVE RYB ODY

Ee(m) = FVW HVX HCO UFL RKI



Polyalphabetic substitution ciphers, cont’d

◮ The Vigenère cipher has a block-length of 3, and uses the
permutations e = (p1, p2, p3) where p1 rotates each letter of
the alphabet three places to the right, p2 rotates seven
positions, and p3 ten positions
(e may be represented as the word DHK). For example:

m = COM EON EVE RYB ODY

Ee(m) = FVW HVX HCO UFL RKI



Polyalphabetic substitution ciphers, cont’d

◮ The Vigenère cipher has a block-length of 3, and uses the
permutations e = (p1, p2, p3) where p1 rotates each letter of
the alphabet three places to the right, p2 rotates seven
positions, and p3 ten positions
(e may be represented as the word DHK). For example:

m = COM EON EVE RYB ODY

Ee(m) = FVW HVX HCO UFL RKI

Polyalphabetic substitution ciphers have the advantage over simple
substitution ciphers that symbol frequencies are not preserved: a
single letter may be encrypted to several different letters, in
different positions.



Polyalphabetic substitution ciphers, cont’d

◮ The Vigenère cipher has a block-length of 3, and uses the
permutations e = (p1, p2, p3) where p1 rotates each letter of
the alphabet three places to the right, p2 rotates seven
positions, and p3 ten positions
(e may be represented as the word DHK). For example:

m = COM EON EVE RYB ODY

Ee(m) = FVW HVX HCO UFL RKI

Polyalphabetic substitution ciphers have the advantage over simple
substitution ciphers that symbol frequencies are not preserved: a
single letter may be encrypted to several different letters, in
different positions. However, cryptanalysis is still straightforward,
by first determining the block size, and then applying frequency
analysis by splitting the letters into groups which are encrypted
with the same permutation. So polyalphabetic substitutions are
certainly not secure.



Simple transposition ciphers

The simple transposition cipher is a block cipher with
block-length t. It simply permutes the symbols in the block.



Simple transposition ciphers

The simple transposition cipher is a block cipher with
block-length t. It simply permutes the symbols in the block.

◮ Let K be the set of all permutations on the set {1, 2, . . . , t}.
For each e ∈ K, the encryption function is defined by

Ee(m) = (me(1),me(2), . . . ,me(t)).

The corresponding decryption key is the inverse permutation.



Simple transposition ciphers

The simple transposition cipher is a block cipher with
block-length t. It simply permutes the symbols in the block.

◮ Let K be the set of all permutations on the set {1, 2, . . . , t}.
For each e ∈ K, the encryption function is defined by

Ee(m) = (me(1),me(2), . . . ,me(t)).

The corresponding decryption key is the inverse permutation.

This cipher again preserves letter frequencies, which allows easy
cryptanalysis. So it is not secure.



Simple transposition ciphers

The simple transposition cipher is a block cipher with
block-length t. It simply permutes the symbols in the block.

◮ Let K be the set of all permutations on the set {1, 2, . . . , t}.
For each e ∈ K, the encryption function is defined by

Ee(m) = (me(1),me(2), . . . ,me(t)).

The corresponding decryption key is the inverse permutation.

This cipher again preserves letter frequencies, which allows easy
cryptanalysis. So it is not secure. These block ciphers so far are
not useful by themselves, but get interesting when combined. A
good cipher should add both confusion by substitution
transformations and diffusion by transpositions. Confusion
obscures the relationship between the key and the ciphertext.
Diffusion spreads out redundancy in the plaintext across the
ciphertext. Modern block ciphers apply rounds consisting of
substitution and transposition steps.



Product ciphers

It’s easy to combine encryption functions using composition,
because the composition of two bijections is again a bijection.



Product ciphers

It’s easy to combine encryption functions using composition,
because the composition of two bijections is again a bijection.

◮ A product cipher is defined as the composition of N

encryption transformations, E1e ,E2e , . . . ,ENe , for n ≥ 0.
(We can consider a single key space wlog: each
transformation may depend on a different part of the key e, or
may be independent of the key.)



Product ciphers

It’s easy to combine encryption functions using composition,
because the composition of two bijections is again a bijection.

◮ A product cipher is defined as the composition of N

encryption transformations, E1e ,E2e , . . . ,ENe , for n ≥ 0.
(We can consider a single key space wlog: each
transformation may depend on a different part of the key e, or
may be independent of the key.)

◮ The overall encryption function composes the parts:

Ee = E1e ; E2e ; . . . ; ENe

where ; denotes function composition in the diagramatic order.



Product ciphers

It’s easy to combine encryption functions using composition,
because the composition of two bijections is again a bijection.

◮ A product cipher is defined as the composition of N

encryption transformations, E1e ,E2e , . . . ,ENe , for n ≥ 0.
(We can consider a single key space wlog: each
transformation may depend on a different part of the key e, or
may be independent of the key.)

◮ The overall encryption function composes the parts:

Ee = E1e ; E2e ; . . . ; ENe

where ; denotes function composition in the diagramatic order.
◮ The overal decryption function composes the decryptions:

Dd = DNd ; . . . D2d ; D1d



Product ciphers

It’s easy to combine encryption functions using composition,
because the composition of two bijections is again a bijection.

◮ A product cipher is defined as the composition of N

encryption transformations, E1e ,E2e , . . . ,ENe , for n ≥ 0.
(We can consider a single key space wlog: each
transformation may depend on a different part of the key e, or
may be independent of the key.)

◮ The overall encryption function composes the parts:

Ee = E1e ; E2e ; . . . ; ENe

where ; denotes function composition in the diagramatic order.
◮ The overal decryption function composes the decryptions:

Dd = DNd ; . . . D2d ; D1d

◮ Involutions (functions that are their own inverse) are
particularly useful in constructing product ciphers. The
favourite is XOR: f (x) = x ⊕ c .



Constructing block ciphers

◮ Classical block ciphers are constructed from circuits of
S-boxes and P-boxes.



Constructing block ciphers

◮ Classical block ciphers are constructed from circuits of
S-boxes and P-boxes.

◮ The Feistel principle gives a way of constructing a cipher so
that the same circuit is used for both encryption and
decryption. A round in a Feistel cipher treats the input block
in two halfs, Li and Ri . It uses the right-hand half to modify
the left, and then swaps:

Li+1 = Ri Ri+1 = Li ⊕ f (Ki ,Ri).

The inverse operation is:

Ri = Li+1 Li = Ri+1 ⊕ f (Ki ,Li+1).



Constructing block ciphers

◮ Classical block ciphers are constructed from circuits of
S-boxes and P-boxes.

◮ The Feistel principle gives a way of constructing a cipher so
that the same circuit is used for both encryption and
decryption. A round in a Feistel cipher treats the input block
in two halfs, Li and Ri . It uses the right-hand half to modify
the left, and then swaps:

Li+1 = Ri Ri+1 = Li ⊕ f (Ki ,Ri).

The inverse operation is:

Ri = Li+1 Li = Ri+1 ⊕ f (Ki ,Li+1).



Modes for block ciphers: ECB

◮ Block ciphers can be used in various modes. Important

reading exercise: compare the security, efficiency, inbuilt
data integrity, and error recovery of these different modes.

◮ ECB: electronic codebook mode. Each block of plaintext xj is
enciphered independently.

◮ This is the simplest mode, but it has obvious failings.



Modes for block ciphers: CBC

◮ CBC: cipherblock chaining mode. Each plaintext block xj is
XORed with the previous ciphertext cj−1 block before
encryption. An initialization vector (IV) (optionally secret,
fresh for each message) is used for c0.

cj = Ek(xj ⊕ cj−1) xj = cj−1 ⊕ E−1
k (cj)



Modes for block ciphers: OFB

◮ OFB: output-feedback mode. Block cipher encryption
function used as synchronous stream cipher (internal

feedback).

cj = xj ⊕ sj ; sj = Ek(sj−1) xj = cj ⊕ sj ; sj = Ek(sj−1)



Modes for block ciphers: CFB

◮ CFB cipher-feedback mode. Encryption function of block
cipher used as self-synchronizing stream cipher for symbols of
size up to block size.

cj = xj ⊕ Ek(cj−1) xj = cj ⊕ Ek(cj−1)



Outline

Stream ciphers

Block ciphers

DES and Rijndael

Summary



DES

◮ DES is a block cipher based on Feistel’s principle. Block-size
is 64 bits, key-size 56 bits (+8 parity bits). Invented by IBM
in 1970s, tweaked by NSA. Still widely used, esp. in financial
sector. Much analysed.



DES

◮ DES is a block cipher based on Feistel’s principle. Block-size
is 64 bits, key-size 56 bits (+8 parity bits). Invented by IBM
in 1970s, tweaked by NSA. Still widely used, esp. in financial
sector. Much analysed.

◮ Main threat isn’t cryptanalytic, but (slightly optimised)
exhaustive search in small key-space. Remedied by 3DES

(triple DES), 3 keys:

C = Ek3
(Dk2

(Ek1
(P))) P = Dk1

(Ek2
(Dk3

(C ))).



DES

◮ DES is a block cipher based on Feistel’s principle. Block-size
is 64 bits, key-size 56 bits (+8 parity bits). Invented by IBM
in 1970s, tweaked by NSA. Still widely used, esp. in financial
sector. Much analysed.

◮ Main threat isn’t cryptanalytic, but (slightly optimised)
exhaustive search in small key-space. Remedied by 3DES

(triple DES), 3 keys:

C = Ek3
(Dk2

(Ek1
(P))) P = Dk1

(Ek2
(Dk3

(C ))).

Security of 3DES is not obvious: repeated encryption may not
gain security (one-step DES is not closed, so it in fact does),
and new attacks may be possible (meet-in-the-middle

attack). With 3 independently chosen keys, security is
roughly the same as expected with 2 keys.



DES

◮ DES is a block cipher based on Feistel’s principle. Block-size
is 64 bits, key-size 56 bits (+8 parity bits). Invented by IBM
in 1970s, tweaked by NSA. Still widely used, esp. in financial
sector. Much analysed.

◮ Main threat isn’t cryptanalytic, but (slightly optimised)
exhaustive search in small key-space. Remedied by 3DES

(triple DES), 3 keys:

C = Ek3
(Dk2

(Ek1
(P))) P = Dk1

(Ek2
(Dk3

(C ))).

Security of 3DES is not obvious: repeated encryption may not
gain security (one-step DES is not closed, so it in fact does),
and new attacks may be possible (meet-in-the-middle

attack). With 3 independently chosen keys, security is
roughly the same as expected with 2 keys.

◮ Several other DES variants, including DESX, using
whitenening keys k1, k2 as C = Ek(P ⊕ k1) ⊕ k2. (Used in
Win2K encrypting FS).



Overview of DES internals [FIPS 46-3]



The Advanced Encryption Standard

◮ In October 2000, the US NIST selected Rijndael as the new
AES, to replace the aging DES. Rijndael was designed by two
Belgian cryptographers, Vincent Rijmen and Joan Daemen.
The algorithm was selected as a result of a 3 year worldwide
review process. No proof of security, but a high level of
confidence amongst cryptographers.

http://csrc.nist.gov/encryption/aes/


The Advanced Encryption Standard

◮ In October 2000, the US NIST selected Rijndael as the new
AES, to replace the aging DES. Rijndael was designed by two
Belgian cryptographers, Vincent Rijmen and Joan Daemen.
The algorithm was selected as a result of a 3 year worldwide
review process. No proof of security, but a high level of
confidence amongst cryptographers.

◮ Rijndael satisfied a number of requisite criteria for the AES:
◮ Security: mathematical, cryptanalytic resistance; randomness;
◮ Efficiency: time/space, hardware and software;
◮ Flexibility: block sizes 128 bits, key sizes 128/192/256 bits.
◮ Intellectual property: unclassified, published, royalty-free.

http://csrc.nist.gov/encryption/aes/


The Advanced Encryption Standard

◮ In October 2000, the US NIST selected Rijndael as the new
AES, to replace the aging DES. Rijndael was designed by two
Belgian cryptographers, Vincent Rijmen and Joan Daemen.
The algorithm was selected as a result of a 3 year worldwide
review process. No proof of security, but a high level of
confidence amongst cryptographers.

◮ Rijndael satisfied a number of requisite criteria for the AES:
◮ Security: mathematical, cryptanalytic resistance; randomness;
◮ Efficiency: time/space, hardware and software;
◮ Flexibility: block sizes 128 bits, key sizes 128/192/256 bits.
◮ Intellectual property: unclassified, published, royalty-free.

The US Federal Information Processing standard FIPS 197 for
AES was published in November 2001.

http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf


The Advanced Encryption Standard

◮ In October 2000, the US NIST selected Rijndael as the new
AES, to replace the aging DES. Rijndael was designed by two
Belgian cryptographers, Vincent Rijmen and Joan Daemen.
The algorithm was selected as a result of a 3 year worldwide
review process. No proof of security, but a high level of
confidence amongst cryptographers.

◮ Rijndael satisfied a number of requisite criteria for the AES:
◮ Security: mathematical, cryptanalytic resistance; randomness;
◮ Efficiency: time/space, hardware and software;
◮ Flexibility: block sizes 128 bits, key sizes 128/192/256 bits.
◮ Intellectual property: unclassified, published, royalty-free.

The US Federal Information Processing standard FIPS 197 for
AES was published in November 2001.

◮ Rijndael is built as a network of linear transformations and
substitutions, with 10, 12 or 14 rounds, depending on key size.

http://csrc.nist.gov/encryption/aes/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf


Outline

Stream ciphers

Block ciphers

DES and Rijndael

Summary



Current symmetric crypto algorithms

Stream ciphers



Current symmetric crypto algorithms

Stream ciphers

◮ A5, encrypts GSM digital cellular traffic. Originally secret,
but leaked and reverse-engineered. Based on three LFSRs.
Very feasible attack.



Current symmetric crypto algorithms

Stream ciphers

◮ A5, encrypts GSM digital cellular traffic. Originally secret,
but leaked and reverse-engineered. Based on three LFSRs.
Very feasible attack.

◮ PKZIP has a byte-wide stream cipher. Easily broken with a
small amount of plain text.



Current symmetric crypto algorithms

Stream ciphers

◮ A5, encrypts GSM digital cellular traffic. Originally secret,
but leaked and reverse-engineered. Based on three LFSRs.
Very feasible attack.

◮ PKZIP has a byte-wide stream cipher. Easily broken with a
small amount of plain text.

◮ RC4/ARCFOUR. RSADSI trade secret; code posted
anonymously in 1994. Variable key-size, byte-wide, OFB with
8× 8 S-box. Very fast & simple, widely licensed (Lotus Notes,
Oracle SQL), less widely studied.



Current symmetric crypto algorithms

Stream ciphers

◮ A5, encrypts GSM digital cellular traffic. Originally secret,
but leaked and reverse-engineered. Based on three LFSRs.
Very feasible attack.

◮ PKZIP has a byte-wide stream cipher. Easily broken with a
small amount of plain text.

◮ RC4/ARCFOUR. RSADSI trade secret; code posted
anonymously in 1994. Variable key-size, byte-wide, OFB with
8× 8 S-box. Very fast & simple, widely licensed (Lotus Notes,
Oracle SQL), less widely studied.



Current symmetric crypto algorithms

Stream ciphers

◮ A5, encrypts GSM digital cellular traffic. Originally secret,
but leaked and reverse-engineered. Based on three LFSRs.
Very feasible attack.

◮ PKZIP has a byte-wide stream cipher. Easily broken with a
small amount of plain text.

◮ RC4/ARCFOUR. RSADSI trade secret; code posted
anonymously in 1994. Variable key-size, byte-wide, OFB with
8× 8 S-box. Very fast & simple, widely licensed (Lotus Notes,
Oracle SQL), less widely studied.

Block ciphers • DES, 3DES, Rijndael outlined previously.
◮ IDEA, 64-bit blocks, 128-bit key. Efficient: uses XOR,

addition and multiplication operations. Patented for
commercial use. Used in PGP.



Current symmetric crypto algorithms

Stream ciphers

◮ A5, encrypts GSM digital cellular traffic. Originally secret,
but leaked and reverse-engineered. Based on three LFSRs.
Very feasible attack.

◮ PKZIP has a byte-wide stream cipher. Easily broken with a
small amount of plain text.

◮ RC4/ARCFOUR. RSADSI trade secret; code posted
anonymously in 1994. Variable key-size, byte-wide, OFB with
8× 8 S-box. Very fast & simple, widely licensed (Lotus Notes,
Oracle SQL), less widely studied.

Block ciphers • DES, 3DES, Rijndael outlined previously.
◮ IDEA, 64-bit blocks, 128-bit key. Efficient: uses XOR,

addition and multiplication operations. Patented for
commercial use. Used in PGP.

◮ Skipjack. NSA designed, once classified (key escrow and
LEAF issue) and patented under a secrecy order; now public
domain. Block size 64 bits, 80-bit key. Used in tamperproof
Clipper and Capstone chips.

http://csrc.nist.gov/encryption/skipjack-kea.htm


References

The DES diagram is from Smart, Chapter 8 and the block cipher
diagrams are from Figure 7.1 in the HAC.

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A.
Vanstone, editors. Handbook of Applied Cryptography.
CRC Press Series on Discrete Mathematics and Its
Applications. CRC Press, 1997.
Online version at
http://www.cacr.math.uwaterloo.ca/hac.

Bruce Schneier. Applied Cryptography.
John Wiley & Sons, second edition, 1996.

Nigel Smart. Cryptography: An Introduction.
3rd edition, 2008, at
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/.

Recommended Reading

Chapters 7 and 8 of Smart.

http://www.cacr.math.uwaterloo.ca/hac
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

	Outline
	Stream ciphers
	Block ciphers
	DES and Rijndael
	Summary

