
Programming Securely I
Computer Security Lecture 4

Mike Just1

School of Informatics
University of Edinburgh

21st January 2009

1Based on original lecture notes by David Aspinall



Outline

Programming failures

Buffer overflows

Race conditions

Permissions and Access Control

Poor randomness

Confidentiality leaks

Building in security: design and guidelines



Outline

Programming failures

Buffer overflows

Race conditions

Permissions and Access Control

Poor randomness

Confidentiality leaks

Building in security: design and guidelines



Programming and Security

The relationship between programming and security
may be viewed in at least a couple of ways.

Programming Security To develop code for
security-specific functions such as encryption,
digital signatures, firewalls, etc.

Programming Securely To develop code in a secure
manner so that the code itself is not a
vulnerability that can be exploited by an
attacker.

In this lecture, we consider Programming Securely.



Choose security

2:22 pm PT, Tuesday, January 15, 2002.

“. . . we’re in the process of training all our

developers in the latest secure coding

techniques. . . now, when we face a choice

between adding features and resolving security

issues, we need to choose security.”



Choose security

2:22 pm PT, Tuesday, January 15, 2002.

“. . . we’re in the process of training all our

developers in the latest secure coding

techniques. . . now, when we face a choice

between adding features and resolving security

issues, we need to choose security.”

◮ The penetrate and patch approach to fixing
security problems in mass market systems is badly
flawed, e.g.
◮ patches often do not get applied
◮ patches often fix only symptoms, not cause
◮ patches cause version explosion, compatibility
nightmare

◮ Much better to eliminate security bugs at outset



Vulnerabilities at CERT/CC

◮ The CERT Coordination Center

http://www.cert.org/ at Carnegie Mellon
University is a reporting centre for Internet security
problems. They provide technical advice,
recommended responses, identifying trends.

http://www.cert.org/


Vulnerabilities at CERT/CC

◮ The CERT Coordination Center

http://www.cert.org/ at Carnegie Mellon
University is a reporting centre for Internet security
problems. They provide technical advice,
recommended responses, identifying trends.

◮ Recent statistics:

Year 2003 2004 2005 2006 2007 2008[Q1-3]

Vulnerabilities: 3784 3780 5990 8064 7236 6058

The no. 1 category of vulnerabilities (over 50% up
to 2004, at least) is the buffer overflow.

http://www.cert.org/


Categories of programming failure

1. buffer overflow (inadequate input validation)

2. race conditions

3. access control mistakes

4. poor randomness

5. confidentiality leaks

The following slides review each category.

The single most important piece of advice for
programming secure applications: check your inputs!



Outline

Programming failures

Buffer overflows

Race conditions

Permissions and Access Control

Poor randomness

Confidentiality leaks

Building in security: design and guidelines



A few overflow vulnerabilities

splitvt, syslog, mount/umount, sendmail, lpr, bind,

gethostbyname(), modstat, cron, login, sendmail again, the query

CGI script, newgrp, AutoSofts RTS inventory control system, host,

talkd, getopt(), sendmail yet again, FreeBSD s crt0.c, WebSite 1.1,

rlogin, term, ffbconfig, libX11, passwd yppasswd nispasswd, imapd,

ipop3d, SuperProbe, lpd, xterm, eject, lpd again, host, mount, the

NLS library, xlock, libXt and further X11R6 libraries, talkd, fdformat,

eject, elm, cxterm, ps, fbconfig, metamail, dtterm, df, an entire

range of SGI programs, ps again, chkey, libX11, suidperl, libXt

again, lquerylv, getopt() again, dtaction, at, libDtSvc, eeprom, lpr

yet again, smbmount, xlock yet again, MH-6.83, NIS+, ordist, xlock

again, ps again, bash, rdist, login/scheme, libX11 again, sendmail

for Windows NT, wm, wwwcount, tgetent(), xdat, termcap, portmir,

writesrv, rcp, opengroup, telnetd, rlogin, MSIE, eject, df, statd, at

again, rlogin again, rsh, ping, traceroute, Cisco 7xx routers,

xscreensaver, passwd, deliver, cidentd, Xserver, the Yapp

conferencing server, . . .



A few overflow vulnerabilities – continued

multiple problems in the Windows95/NT NTFTP client, the Windows

War and Serv-U FTP daemon, the Linux dynamic linker, filter (part of

elm-2.4), the IMail POP3 server for NT, pset, rpc.nisd, Samba server,

ufsrestore, DCE secd, pine, dslip, Real Player, SLMail, socks5, CSM,

Proxy, imapd (again), Outlook Express, Netscape Mail, mutt, MSIE,

Lotus Notes, MSIE again, libauth, login, iwsh, permissions, unfsd,

Minicom, nslookup, zpop, dig, WebCam32, smbclient, compress,

elvis, lha, bash, jidentd, Tooltalk, ttdbserver, dbadmin, zgv, mountd,

pcnfs, Novell Groupwise, mscreen, xterm, Xaw library, Cisco IOS,

mutt again, ospf_monitor, sdtcm_convert, Netscape (all versions),

mpg123, Xprt, klogd, catdoc, junkbuster, SerialPOP, and rdist

◮ It’s frustrating that such a basic programming error
can have such an enormous impact on software
security, and doubly frustrating that it hasn’t been
eliminated yet.



Source of buffer overflows

◮ Programmers are often careless about checking the
size of arguments, storing them into fixed size
buffers using functions which don’t check for
overflow.



Source of buffer overflows

◮ Programmers are often careless about checking the
size of arguments, storing them into fixed size
buffers using functions which don’t check for
overflow.

◮ Classically, the problem is with C-style strings,
implemented as arbitrary length null-terminated
sequences of bytes.



Source of buffer overflows

◮ Programmers are often careless about checking the
size of arguments, storing them into fixed size
buffers using functions which don’t check for
overflow.

◮ Classically, the problem is with C-style strings,
implemented as arbitrary length null-terminated
sequences of bytes.
◮ Standard C library functions like strcpy() do not
check bounds when copying from source to
destination. If the destination buffer is too small, the
string will overflow and corrupt other data.



Source of buffer overflows

◮ Programmers are often careless about checking the
size of arguments, storing them into fixed size
buffers using functions which don’t check for
overflow.

◮ Classically, the problem is with C-style strings,
implemented as arbitrary length null-terminated
sequences of bytes.
◮ Standard C library functions like strcpy() do not
check bounds when copying from source to
destination. If the destination buffer is too small, the
string will overflow and corrupt other data.

◮ Overflows can corrupt other pieces of the program
data and cause security bugs, or even execution of
arbitrary code. . .



Smashing the stack for fun and profit

◮ Attack: exploit a program that uses a stack
allocated buffer, by using a specially constructed
longer-than-expected argument.



Smashing the stack for fun and profit

◮ Attack: exploit a program that uses a stack
allocated buffer, by using a specially constructed
longer-than-expected argument.

◮ The argument overwrites the return address,
causing the CPU to execute part of it.



Smashing the stack for fun and profit

◮ Attack: exploit a program that uses a stack
allocated buffer, by using a specially constructed
longer-than-expected argument.

◮ The argument overwrites the return address,
causing the CPU to execute part of it.

...

return address
...

attack code
...

buffer

The malicious argument over-

writes all of the space allocated

for the buffer, all the way to the

return address location. This is

altered to point back into the

stack, somewhere in a “landing

pad” of NOPs before the attack

code (the “egg”). Typically the

attack code executes a shell.



Smashing the stack for fun and profit

◮ Attack: exploit a program that uses a stack
allocated buffer, by using a specially constructed
longer-than-expected argument.

◮ The argument overwrites the return address,
causing the CPU to execute part of it.

...

return address
...

attack code
...

buffer

The malicious argument over-

writes all of the space allocated

for the buffer, all the way to the

return address location. This is

altered to point back into the

stack, somewhere in a “landing

pad” of NOPs before the attack

code (the “egg”). Typically the

attack code executes a shell.

◮ Similar attacks work on the heap.



Fixing buffer overflows

◮ good programming to check bounds when
necessary



Fixing buffer overflows

◮ good programming to check bounds when
necessary

◮ auditing to find possible vulnerable code



Fixing buffer overflows

◮ good programming to check bounds when
necessary

◮ auditing to find possible vulnerable code

◮ special libraries which contain bound-checking
versions of standard functions



Fixing buffer overflows

◮ good programming to check bounds when
necessary

◮ auditing to find possible vulnerable code

◮ special libraries which contain bound-checking
versions of standard functions

◮ StackGuard compiler using “canaries”.



Fixing buffer overflows

◮ good programming to check bounds when
necessary

◮ auditing to find possible vulnerable code

◮ special libraries which contain bound-checking
versions of standard functions

◮ StackGuard compiler using “canaries”.

◮ disabling stack or data execution



Fixing buffer overflows

◮ good programming to check bounds when
necessary

◮ auditing to find possible vulnerable code

◮ special libraries which contain bound-checking
versions of standard functions

◮ StackGuard compiler using “canaries”.

◮ disabling stack or data execution
◮ Execute Disable Bit (NX) now added to Intel and
AMD CPUs



Fixing buffer overflows

◮ good programming to check bounds when
necessary

◮ auditing to find possible vulnerable code

◮ special libraries which contain bound-checking
versions of standard functions

◮ StackGuard compiler using “canaries”.

◮ disabling stack or data execution
◮ Execute Disable Bit (NX) now added to Intel and
AMD CPUs

◮ Needs operating system support
— Added in Windows XP SP2, Linux 2.6.8



Outline

Programming failures

Buffer overflows

Race conditions

Permissions and Access Control

Poor randomness

Confidentiality leaks

Building in security: design and guidelines



Race conditions

◮ Another technical attack: exploit race conditions.



Race conditions

◮ Another technical attack: exploit race conditions.
◮ Example: Unix mkdir used to work in two stages:



Race conditions

◮ Another technical attack: exploit race conditions.
◮ Example: Unix mkdir used to work in two stages:

1. Make new directory
2. Change ownership



Race conditions

◮ Another technical attack: exploit race conditions.
◮ Example: Unix mkdir used to work in two stages:

1. Make new directory
2. Change ownership

Attack: suspend mkdir process between 1 and 2,
replace new directory with a link to a confidential
file, e.g., /etc/passwd. Resume process; it then
changes permissions on the critical file instead of
the new directory.



Race conditions

◮ Another technical attack: exploit race conditions.
◮ Example: Unix mkdir used to work in two stages:

1. Make new directory
2. Change ownership

Attack: suspend mkdir process between 1 and 2,
replace new directory with a link to a confidential
file, e.g., /etc/passwd. Resume process; it then
changes permissions on the critical file instead of
the new directory.

◮ Race conditions can be hard to find, because they
arise due to asynchronous processing (e.g. multiple
threads) and may seldom/never occur during
ordinary use. Likely to be a growing problem.



Race conditions

◮ Another technical attack: exploit race conditions.
◮ Example: Unix mkdir used to work in two stages:

1. Make new directory
2. Change ownership

Attack: suspend mkdir process between 1 and 2,
replace new directory with a link to a confidential
file, e.g., /etc/passwd. Resume process; it then
changes permissions on the critical file instead of
the new directory.

◮ Race conditions can be hard to find, because they
arise due to asynchronous processing (e.g. multiple
threads) and may seldom/never occur during
ordinary use. Likely to be a growing problem.

◮ General approaches to fixing:
◮ use locks in multi-threaded programming
(synchronized)

◮ reduce time-of-check, time-of-use (TOCTOU)



Outline

Programming failures

Buffer overflows

Race conditions

Permissions and Access Control

Poor randomness

Confidentiality leaks

Building in security: design and guidelines



Permissions vulnerabilities

◮ Many exploits have taken advantage of failure to
follow the principle of least privilege.

◮ Poor programming or inflexible OS permissions
structures can lead to programs and users that are
given more privileges than they need.

◮ Typical pattern of attacking a system is using
escalation of privilege:

gain access
as ordinary

user

escalate
permissions

do
anything

!!!



Managing permissions

◮ Two extreme views:

1. Most machines are single-user or single-application
so user-level access controls don’t matter.
Separation of users lies in application-level code
and network security.

2. Trusted operating systems are vital, good security
and strong access control mechanisms must be
built-in to the lowest level.



Managing permissions

◮ Two extreme views:

1. Most machines are single-user or single-application
so user-level access controls don’t matter.
Separation of users lies in application-level code
and network security.

2. Trusted operating systems are vital, good security
and strong access control mechanisms must be
built-in to the lowest level.

The first view was originally argued by vendors
such as Microsoft and the second view was typical
of the military.
Nowadays, the second view is also being espoused
by Microsoft (why?).



Outline

Programming failures

Buffer overflows

Race conditions

Permissions and Access Control

Poor randomness

Confidentiality leaks

Building in security: design and guidelines



Poor randomness

◮ Numerous exploits have taken advantage of the
predictability of supposedly “random” numbers.



Poor randomness

◮ Numerous exploits have taken advantage of the
predictability of supposedly “random” numbers.

◮ Security applications require random numbers for
various reasons, the most important of which is key
generation.



Poor randomness

◮ Numerous exploits have taken advantage of the
predictability of supposedly “random” numbers.

◮ Security applications require random numbers for
various reasons, the most important of which is key
generation.

◮ General strategy: true random

seed+cryptographically strong PRNG if more
bits needed. Secure PRNG passes statistical
randomness properties and has property that an
attacker cannot guess the next value in the
sequence based on some history of previous values.



Poor randomness

◮ Numerous exploits have taken advantage of the
predictability of supposedly “random” numbers.

◮ Security applications require random numbers for
various reasons, the most important of which is key
generation.

◮ General strategy: true random

seed+cryptographically strong PRNG if more
bits needed. Secure PRNG passes statistical
randomness properties and has property that an
attacker cannot guess the next value in the
sequence based on some history of previous values.

◮ How do we get the true random seed? Without a
dedicated random source, we must rely on
non-deterministic external environmental data. . .



Environmental sources of randomness

◮ Good sources [RFC1750]: disk-head seek times,
keystrokes, mouse movements, memory paging
behaviour, network status, interrupt arrival times,
random electrical noise (e.g. /dev/audio). Best use
several, combined with a hash.

http://www.informatics.ed.ac.uk/teaching/courses/cs/docs/crypto/rfc1750.txt


Environmental sources of randomness

◮ Good sources [RFC1750]: disk-head seek times,
keystrokes, mouse movements, memory paging
behaviour, network status, interrupt arrival times,
random electrical noise (e.g. /dev/audio). Best use
several, combined with a hash.

◮ Bad sources: system clock, Ethernet addresses or
hardware serial numbers, network arrival packet
timing or anything else that can be predicted or
influenced by an adversary.

http://www.informatics.ed.ac.uk/teaching/courses/cs/docs/crypto/rfc1750.txt


Environmental sources of randomness

◮ Good sources [RFC1750]: disk-head seek times,
keystrokes, mouse movements, memory paging
behaviour, network status, interrupt arrival times,
random electrical noise (e.g. /dev/audio). Best use
several, combined with a hash.

◮ Bad sources: system clock, Ethernet addresses or
hardware serial numbers, network arrival packet
timing or anything else that can be predicted or
influenced by an adversary.

◮ Linux’s random kernel device uses an “entropy
pool” and estimates the number of “true” random
bits in the pool. Adding random data into pool
recharges entropy; reading random bytes removes
entropy. Strong random device /dev/random can
return no more bits than are in the pool. Less
secure device /dev/urandom returns unbounded
amount of cryptographically strong numbers.

http://www.informatics.ed.ac.uk/teaching/courses/cs/docs/crypto/rfc1750.txt


Outline

Programming failures

Buffer overflows

Race conditions

Permissions and Access Control

Poor randomness

Confidentiality leaks

Building in security: design and guidelines



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down
◮ Journaling file systems, disk-caching make
sanitisation tricky



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down
◮ Journaling file systems, disk-caching make
sanitisation tricky

◮ Hard-disk data recovery can recover several
generations of data



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down
◮ Journaling file systems, disk-caching make
sanitisation tricky

◮ Hard-disk data recovery can recover several
generations of data

◮ TEMPEST RF leakage from cables, monitors.



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down
◮ Journaling file systems, disk-caching make
sanitisation tricky

◮ Hard-disk data recovery can recover several
generations of data

◮ TEMPEST RF leakage from cables, monitors.

◮ Some defences:



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down
◮ Journaling file systems, disk-caching make
sanitisation tricky

◮ Hard-disk data recovery can recover several
generations of data

◮ TEMPEST RF leakage from cables, monitors.

◮ Some defences:
◮ Touch memory regularly or OS calls to lock pages.



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down
◮ Journaling file systems, disk-caching make
sanitisation tricky

◮ Hard-disk data recovery can recover several
generations of data

◮ TEMPEST RF leakage from cables, monitors.

◮ Some defences:
◮ Touch memory regularly or OS calls to lock pages.
◮ Use custom swap file, zeroed after use.



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down
◮ Journaling file systems, disk-caching make
sanitisation tricky

◮ Hard-disk data recovery can recover several
generations of data

◮ TEMPEST RF leakage from cables, monitors.

◮ Some defences:
◮ Touch memory regularly or OS calls to lock pages.
◮ Use custom swap file, zeroed after use.
◮ Blurred/anti-aliased fonts: reduce high-frequency RF



Storage confidentiality leaks

◮ Security applications store sensitive data in
data-structures held in memory. Vulnerabilities:
◮ Other processes may be able to read memory
◮ Memory may be swapped to disk swap files
◮ Laptop BIOSes, OSes suspend-to-disk operation
◮ Data can be recovered from RAM after power down
◮ Journaling file systems, disk-caching make
sanitisation tricky

◮ Hard-disk data recovery can recover several
generations of data

◮ TEMPEST RF leakage from cables, monitors.

◮ Some defences:
◮ Touch memory regularly or OS calls to lock pages.
◮ Use custom swap file, zeroed after use.
◮ Blurred/anti-aliased fonts: reduce high-frequency RF
◮ Other defences beyond realm of software.



Outline

Programming failures

Buffer overflows

Race conditions

Permissions and Access Control

Poor randomness

Confidentiality leaks

Building in security: design and guidelines



Security design principles

Saltzer and Schroeder (1975) gave 8 design principles
as examples for OS protection (access control):



Security design principles

Saltzer and Schroeder (1975) gave 8 design principles
as examples for OS protection (access control):

1. Economy of mechanism — keep design simple
and small as possible. Especially important in
security because errors in design are not seen in
normal use. Consider line-by-line code inspection.



Security design principles

Saltzer and Schroeder (1975) gave 8 design principles
as examples for OS protection (access control):

1. Economy of mechanism — keep design simple
and small as possible. Especially important in
security because errors in design are not seen in
normal use. Consider line-by-line code inspection.

2. Fail-safe defaults — base access decisions on
permission rather than exclusion. Conservative
design must argue why objects should be
accessible, rather than why they should not.



Security design principles

Saltzer and Schroeder (1975) gave 8 design principles
as examples for OS protection (access control):

1. Economy of mechanism — keep design simple
and small as possible. Especially important in
security because errors in design are not seen in
normal use. Consider line-by-line code inspection.

2. Fail-safe defaults — base access decisions on
permission rather than exclusion. Conservative
design must argue why objects should be
accessible, rather than why they should not.

3. Complete mediation — every access to every
object must be authorized. This implies that a
foolproof method of authentication is available.



Security design principles

Saltzer and Schroeder (1975) gave 8 design principles
as examples for OS protection (access control):

1. Economy of mechanism — keep design simple
and small as possible. Especially important in
security because errors in design are not seen in
normal use. Consider line-by-line code inspection.

2. Fail-safe defaults — base access decisions on
permission rather than exclusion. Conservative
design must argue why objects should be
accessible, rather than why they should not.

3. Complete mediation — every access to every
object must be authorized. This implies that a
foolproof method of authentication is available.

4. Open design — the design should not be secret.
Decouple protection mechanisms from protection
keys; no security-by-obscurity.



Security design principles — continued

5. Separation of privilege — require two keys
rather than one. Once the mechanism is locked,
two distinct owners can be made responsible for
the keys. Implementation of ADTs uses this idea.



Security design principles — continued

5. Separation of privilege — require two keys
rather than one. Once the mechanism is locked,
two distinct owners can be made responsible for
the keys. Implementation of ADTs uses this idea.

6. Least privilege — every program and every user
should operate using least privilege necessary for
the job. Like military rule of “need to know”.



Security design principles — continued

5. Separation of privilege — require two keys
rather than one. Once the mechanism is locked,
two distinct owners can be made responsible for
the keys. Implementation of ADTs uses this idea.

6. Least privilege — every program and every user
should operate using least privilege necessary for
the job. Like military rule of “need to know”.

7. Least common mechanism — minimize
mechanisms common to more than one user; every
shared mechanism is a potential information path.



Security design principles — continued

5. Separation of privilege — require two keys
rather than one. Once the mechanism is locked,
two distinct owners can be made responsible for
the keys. Implementation of ADTs uses this idea.

6. Least privilege — every program and every user
should operate using least privilege necessary for
the job. Like military rule of “need to know”.

7. Least common mechanism — minimize
mechanisms common to more than one user; every
shared mechanism is a potential information path.

8. psychological acceptability — users should
routinely, automatically use protection correctly;
mechanisms should match their mental models.



Security design principles — continued

5. Separation of privilege — require two keys
rather than one. Once the mechanism is locked,
two distinct owners can be made responsible for
the keys. Implementation of ADTs uses this idea.

6. Least privilege — every program and every user
should operate using least privilege necessary for
the job. Like military rule of “need to know”.

7. Least common mechanism — minimize
mechanisms common to more than one user; every
shared mechanism is a potential information path.

8. psychological acceptability — users should
routinely, automatically use protection correctly;
mechanisms should match their mental models.



Security design principles — continued

5. Separation of privilege — require two keys
rather than one. Once the mechanism is locked,
two distinct owners can be made responsible for
the keys. Implementation of ADTs uses this idea.

6. Least privilege — every program and every user
should operate using least privilege necessary for
the job. Like military rule of “need to know”.

7. Least common mechanism — minimize
mechanisms common to more than one user; every
shared mechanism is a potential information path.

8. psychological acceptability — users should
routinely, automatically use protection correctly;
mechanisms should match their mental models.

Two further principles from physical security: work

factor (comparison of cost of circumvention with the
resources of an attacker) and compromise recording

(make mechanisms tamper-evident).



Granularity of security provision

The hardware level has fine grained access controls. At
higher levels, we implement increasingly user-oriented
security policies. Reliability of each level depends on
levels below, and increasingly complex
implementations.

hardware machine-oriented

firmware

OS kernel

OS services

middleware

applications human-oriented

increasing complexity
decreasing reliability



Programming principles

General principles for security programming emerge
from case history of security vulnerabilities.

1. Protect internal data and functions. Use
language based access controls (ADTs, visibility
modifiers, modules).



Programming principles

General principles for security programming emerge
from case history of security vulnerabilities.

1. Protect internal data and functions. Use
language based access controls (ADTs, visibility
modifiers, modules).

2. Handle impossible cases. Today’s “impossible”
cases may be quite likely in next week’s version.
Introduce explicit errors (exceptions, assertions), do
not assume these cannot occur.



Programming principles

General principles for security programming emerge
from case history of security vulnerabilities.

1. Protect internal data and functions. Use
language based access controls (ADTs, visibility
modifiers, modules).

2. Handle impossible cases. Today’s “impossible”
cases may be quite likely in next week’s version.
Introduce explicit errors (exceptions, assertions), do
not assume these cannot occur.

3. Use cryptography carefully. Avoid predictable
keys, small key spaces (choose cryptographic
PRNGs and good seeds); be careful with key
management (use secure locations, clear memory).



Programming principles

General principles for security programming emerge
from case history of security vulnerabilities.

1. Protect internal data and functions. Use
language based access controls (ADTs, visibility
modifiers, modules).

2. Handle impossible cases. Today’s “impossible”
cases may be quite likely in next week’s version.
Introduce explicit errors (exceptions, assertions), do
not assume these cannot occur.

3. Use cryptography carefully. Avoid predictable
keys, small key spaces (choose cryptographic
PRNGs and good seeds); be careful with key
management (use secure locations, clear memory).

4. Program defensively. Beware data that comes
from outside, and be aware of vulnerabilities
introduced by relying on external programs. Try to
minimise those vulnerabilities.



Some C coding guidelines (incomplete!)

◮ Check all input arguments for validity. Since C is
not strongly typed, the validity of types should be
checked. Semantical checks should also be
performed: e.g., if input is an executable file,
should check that the file is indeed executable and
user has execute permission for file.



Some C coding guidelines (incomplete!)

◮ Check all input arguments for validity. Since C is
not strongly typed, the validity of types should be
checked. Semantical checks should also be
performed: e.g., if input is an executable file,
should check that the file is indeed executable and
user has execute permission for file.

◮ Never use scanf; use fgetc (similarly, avoid
printf, etc). In general, avoid routines which do
not check buffer boundaries. Perform bounds
checking on every array index when in any doubt.



Some C coding guidelines (incomplete!)

◮ Check all input arguments for validity. Since C is
not strongly typed, the validity of types should be
checked. Semantical checks should also be
performed: e.g., if input is an executable file,
should check that the file is indeed executable and
user has execute permission for file.

◮ Never use scanf; use fgetc (similarly, avoid
printf, etc). In general, avoid routines which do
not check buffer boundaries. Perform bounds
checking on every array index when in any doubt.

◮ Check error return values. Essential because C
doesn’t implement an exception mechanism.



Some C coding guidelines (incomplete!)

◮ Check all input arguments for validity. Since C is
not strongly typed, the validity of types should be
checked. Semantical checks should also be
performed: e.g., if input is an executable file,
should check that the file is indeed executable and
user has execute permission for file.

◮ Never use scanf; use fgetc (similarly, avoid
printf, etc). In general, avoid routines which do
not check buffer boundaries. Perform bounds
checking on every array index when in any doubt.

◮ Check error return values. Essential because C
doesn’t implement an exception mechanism.

◮ Don’t keep secret information in memory of
unprivileged programs; it may be possible to
interrupt the program and cause it to dump core.



Some C coding guidelines (incomplete!)

◮ Check all input arguments for validity. Since C is
not strongly typed, the validity of types should be
checked. Semantical checks should also be
performed: e.g., if input is an executable file,
should check that the file is indeed executable and
user has execute permission for file.

◮ Never use scanf; use fgetc (similarly, avoid
printf, etc). In general, avoid routines which do
not check buffer boundaries. Perform bounds
checking on every array index when in any doubt.

◮ Check error return values. Essential because C
doesn’t implement an exception mechanism.

◮ Don’t keep secret information in memory of
unprivileged programs; it may be possible to
interrupt the program and cause it to dump core.

◮ Consider logging UIDs, file accesses, etc..



Some C coding guidelines (incomplete!)

◮ Check all input arguments for validity. Since C is
not strongly typed, the validity of types should be
checked. Semantical checks should also be
performed: e.g., if input is an executable file,
should check that the file is indeed executable and
user has execute permission for file.

◮ Never use scanf; use fgetc (similarly, avoid
printf, etc). In general, avoid routines which do
not check buffer boundaries. Perform bounds
checking on every array index when in any doubt.

◮ Check error return values. Essential because C
doesn’t implement an exception mechanism.

◮ Don’t keep secret information in memory of
unprivileged programs; it may be possible to
interrupt the program and cause it to dump core.

◮ Consider logging UIDs, file accesses, etc..
◮ Strip binaries (strings can reveal a lot!).



Some Unix coding guidelines (incomplete!)

◮ Be careful about relying on environment

variables or other settings inherited from the
environment (umask, etc.).



Some Unix coding guidelines (incomplete!)

◮ Be careful about relying on environment

variables or other settings inherited from the
environment (umask, etc.).

◮ Use full pathnames for any filename, program or
data. Use chroot() prisons to restrict access to a
protected subdirectory.



Some Unix coding guidelines (incomplete!)

◮ Be careful about relying on environment

variables or other settings inherited from the
environment (umask, etc.).

◮ Use full pathnames for any filename, program or
data. Use chroot() prisons to restrict access to a
protected subdirectory.

◮ Be very wary of the unix system() call (or similar
shell(), popen(), exec family). It will execute
whatever is passed.



Some Unix coding guidelines (incomplete!)

◮ Be careful about relying on environment

variables or other settings inherited from the
environment (umask, etc.).

◮ Use full pathnames for any filename, program or
data. Use chroot() prisons to restrict access to a
protected subdirectory.

◮ Be very wary of the unix system() call (or similar
shell(), popen(), exec family). It will execute
whatever is passed.

◮ Don’t use chmod(), chown(), chgrp(). Use
fchmod(), fchown() instead, which use file
descriptors instead of names, so do not involve
separate opens (to avoid the race condition).



Some Unix coding guidelines (incomplete!)

◮ Be careful about relying on environment

variables or other settings inherited from the
environment (umask, etc.).

◮ Use full pathnames for any filename, program or
data. Use chroot() prisons to restrict access to a
protected subdirectory.

◮ Be very wary of the unix system() call (or similar
shell(), popen(), exec family). It will execute
whatever is passed.

◮ Don’t use chmod(), chown(), chgrp(). Use
fchmod(), fchown() instead, which use file
descriptors instead of names, so do not involve
separate opens (to avoid the race condition).

◮ Take care with root permissions: beware of setuid
programs, avoid setuid scripts, never open a file as
root. If you need setuid root, give it up as soon as
possible. Better to use ad-hoc user-names.



Some Java coding guidelines (incomplete!)

◮ Using modifiers. Reduce scope of methods and
fields; beware non-final public static (global)
variables; avoid public fields, and add security
checks to public accessors.



Some Java coding guidelines (incomplete!)

◮ Using modifiers. Reduce scope of methods and
fields; beware non-final public static (global)
variables; avoid public fields, and add security
checks to public accessors.

◮ Protecting packages. Stop insertion of untrusted
classes in a package using java.security properties
or “sealed” JAR file; avoid package-access.



Some Java coding guidelines (incomplete!)

◮ Using modifiers. Reduce scope of methods and
fields; beware non-final public static (global)
variables; avoid public fields, and add security
checks to public accessors.

◮ Protecting packages. Stop insertion of untrusted
classes in a package using java.security properties
or “sealed” JAR file; avoid package-access.

◮ Beware mutable objects. Returning or storing
mutables may be risky, if caller then updates them;
use immutable or cloned objects instead.



Some Java coding guidelines (incomplete!)

◮ Using modifiers. Reduce scope of methods and
fields; beware non-final public static (global)
variables; avoid public fields, and add security
checks to public accessors.

◮ Protecting packages. Stop insertion of untrusted
classes in a package using java.security properties
or “sealed” JAR file; avoid package-access.

◮ Beware mutable objects. Returning or storing
mutables may be risky, if caller then updates them;
use immutable or cloned objects instead.

◮ Serialization. Once serialized, objects are outside
JVM security. Designate transient fields and
encrypt/sign persistent data. Beware overriding of
serialization methods (among others).



Some Java coding guidelines (incomplete!)

◮ Using modifiers. Reduce scope of methods and
fields; beware non-final public static (global)
variables; avoid public fields, and add security
checks to public accessors.

◮ Protecting packages. Stop insertion of untrusted
classes in a package using java.security properties
or “sealed” JAR file; avoid package-access.

◮ Beware mutable objects. Returning or storing
mutables may be risky, if caller then updates them;
use immutable or cloned objects instead.

◮ Serialization. Once serialized, objects are outside
JVM security. Designate transient fields and
encrypt/sign persistent data. Beware overriding of
serialization methods (among others).

◮ Clear sensitive information. Store sensitive data
in mutable objects, then clear explicitly ASAP, to
prevent heap-inspection attacks. Can’t rely on
Java’s garbage collection to do this.



References

Mark G. Graff and Kenneth R. van Wyk. Secure Coding:
Principles & Practices. O’Reilly, 2003.

M. Howard and D. LeBlanc. Writing Secure Code.

Microsoft Press, second edition, 2003.

John Viega and Gary McGraw. Building Secure Software:
How to Avoid Security Problems the Right Way.

Addison-Wesley, 2001.

John Viega and Matt Messier. Secure Programming
Cookbook for C and C++. O’Reilly, 2003.

David Wheeler. Secure Programming for Linux and Unix
HOWTO.
http://www.dwheeler.com/secure-programs/.

Recommended Reading

The short book Graff and van Wyk, or an equivalent,
Chapters 1, 2, 5 of Wheeler.

http://www.dwheeler.com/secure-programs/

	Outline
	Programming failures
	Buffer overflows
	Race conditions
	Permissions and Access Control
	Poor randomness
	Confidentiality leaks
	Building in security: design and guidelines

