
Security Models
Computer Security Lecture 15

Mike Just1

School of Informatics
University of Edinburgh

8th March 2010

1Based on original lecture notes by David Aspinall

Outline

Access and information flow

Access control mechanisms

Security levels

The BLP security model

Controlling access or information flow

A security policy describes requirements for a system.

A security model is a way of formalizing a policy.

There are two basic paradigms:
◮ access control: a guard controls whether a
principal (the subject) is allowed access to a
resource (the object).

Subject
Access

request

︸ ︷︷ ︸

Authentication

Reference

monitor
Object

︸ ︷︷ ︸

Authorization

◮ information flow control: dual notion sometimes
used when confidentiality is the primary concern. A
guard controls whether information may flow from
a resource to a principal.

Object

︸ ︷︷ ︸

Authorization

Reference

monitor
Subject

︸ ︷︷ ︸

Authentication

Access operations

◮ We can consider some fundamental access

modes. Typically:

observe examine contents of an object

alter change contents of an object

◮ Next we define access rights and their profiles:

exec read append write

observe Ø Ø

alter Ø Ø

These are the access rights of the influential

Bell-LaPadula (BLP) model. Access rights are the

model’s level of granularity for defining security

policy. Each real operation requires particular

access rights.
◮ Profiles and names of rights differ between

systems, or even for different subject kinds. E.g.,

sometimes have a delete. In Unix, exec for

directories indicates ability to read the directory.

Ownership and identity

◮ Who may set the security policy? A resource may
have a owner who controls access on a
case-by-case basis, or the resource may be
controlled by a uniform system-wide policy.
◮ discretionary access control (DAC):
owners decide who may access their objects

◮ mandatory access control (MAC):
policy set system-wide

A mixture of both may apply.

◮ Owners of resources may be principals in the

system: subjects themselves under access control.

BLP does not (directly) consider operations to

modify access controls (e.g., chown in Windows),

nor explain when such operations are safe.

◮ The identity of subjects is also flexible: e.g.,

identity changes during operations (SUID programs

in Unix). Again, this doesn’t fit BLP.

Access control structures

◮ How are access control rights defined? Many
schemes, but ultimately modelled by:
◮ A set S of subjects, a set O of objects
◮ A set A of operations (modelled by access rights),
we’ll consider A = {exec, read,append,write}.

◮ An access control matrix

M = (Mso)s∈S,o∈O

where each entry Mso ⊆ A defines rights for s to
access o.

◮ Example matrix for S = {Alice,Bob} and three

objects:

bob.doc edit.exe fun.com

Alice {} {exec} {exec, read}

Bob {read,write} {exec} {exec, read,write}



Representing the access control matrix

◮ Implementing M directly is impractical, so different

schemes are used. Complementary possibilities:

either use capabilities (store M by rows) or use

access control lists (store M by columns)

◮ A capability is an unforgeable token that specifies

a subject’s access rights. Pros: can pass around

capabilities; good fit with discr. AC. Cons: difficult to

revoke, or find out who has, access to a particular

resource (must examine all capabilities). Interest

reinstated recently with distributed and mobile

computation.

◮ An access control list (ACL) stores the access

rights to an object with the object itself. Pros: good

fit with object-biased OSes. Cons: difficult to

revoke, or find out, permissions of a particular

subject (must search all ACLs).

Security levels

◮ Multi Level Security (MLS) systems originated in

the military. A security level is a label for subjects

and objects, to describe a policy.

◮ Security levels are ordered:

unclassified ≤ confidential≤ secret ≤ topsecret.

◮ Ordering can express policies like “no write-down”

which means that a high-level subject cannot write

down to a low-level object. (A user with confidential

clearance cannot write an unclassified file: it might

contain confidential information read earlier.)

◮ In practice, we need more flexibility. We may want

categorizations as well, for example, describing

departments or divisions in an organization. Then

individual levels may not be comparable. . .

Security lattices

◮ A lattice is a set L equipped with a partial ordering

≤ such every two elements a,b ∈ L has a least

upper bound a∨b and a greatest lower bound a∧b.

A finite lattice must have top and bottom elements.

◮ In security, if a ≤ b, we say that b dominates a.
◮ system low is the bottom level dominated by all
others.

◮ system high is the top level which dominates all
others.

◮ Lattices are useful for MLS policies because:
◮ for two objects at levels a and b, there is a minimal
security level a∨ b for a subject to access both;

◮ for two subjects at levels a and b, there is a
maximal security level a∧ b for an object which
must be readable by both.

A Lattice Construction [Gollmann]

◮ take a set of classifications H and linear ordering ≤H

◮ take a set C of categories; compartments are subsets of C

◮ security levels are pairs (h, c) with h ∈ H and c ⊆ C

◮ ordering (h1, c1) ≤ (h2, c2) ⇐⇒ h1 ≤ h2, c1 ⊆ c2 gives a lattice.

private,{personnel,engineering}

private,{personnel} private,{engineering}

private,{}

public,{personnel,engineering}

public,{personnel} public,{engineering}

public,{}

Bell-LaPadula Model (BLP)

◮ BLP (1973) is state machine model for

confidentiality.

◮ Permissions use an AC matrix and security levels.

The security policy prevents information flowing

from a high level to a lower level.

◮ Assume subjects S, objects O, accesses A as before.

◮ A set L of security levels, with a partial ordering ≤.

◮ The state set B×M×F captures the current
permissions and subjects accessing objects. It has
three parts:
◮ B possible current accesses
◮ M permissions matrices
◮ F security level assignments

◮ A BLP state is a triple (b,M, f ).

BLP state set

◮ B = P(S×O× A) is the set of all possible current

accesses.

An element b ∈ B is a set of tuples (s, o, a) meaning

s is performing operation a on an object o.

◮ M is the set of permission matrices

M = (Mso)s∈S,o∈O.

◮ F ⊂ LS × LS × LO is the set of security level

assignments.
An element f ∈ F is a triple (fS, fC, fO) where
◮ fS : S→ L gives the maximal security level each
subject can have;

◮ fC : S→ L gives the current security level of each
subject (st fC ≤ fS), and

◮ fO : O→ L gives the classification of all objects.



BLP Mandatory Access Control Policy

Consider a state (b,M, f ), where b is the set of current

accesses.

Simple security property

The ss-property states for each access (s, o, a) ∈ b

where a ∈ {read,write}, then fO(o) ≤ fS(s) (no read-up).

Star property

The ∗-property states for each access (s, o, a) ∈ b

where a ∈ {append,write}, then fC(s) ≤ fO(o) (no

write-down) and moreover, we must have fO(o
′) ≤ fO(o)

for all o′ with (s, o′, a′) ∈ b and a′ ∈ {read,write} (o

must dominate any other object s can read).

Together these form the mandatory access control

policy for BLP.

BLP Discretionary Control and Security

The access control matrix M allows DAC as well.

Discretionary security property

The ds-property: for each access (s, o, a) ∈ b, we have

that a ∈ Mso (discretionary access controls are obeyed).

◮ Definition of Security: The state (b,M, f ) is

secure if the three properties above are satisfied.

Notice that BLP’s notion of security is entirely captured

in the current state.

Current clearance level

◮ Unfortunately, the ∗-property means a high-level

subject cannot send messages to a low-level

subject. This is unrealistic!
◮ There are two ways out:

1. temporarily downgrade a high-level subject, which
is why the model includes the current clearance
level setting fC, or

2. identify a set of trusted subjects allowed to
violate the ∗-property.

◮ Approach 1 works because the current state

describes exactly what each subject knows. So if a

subject (e.g. a process) is downgraded, it cannot

access higher-level material, so may safely write at

any lower level than its maximum.
◮ When subjects are people with high-level

clearances, approach 2 works: we trust someone to

violate the property in the model, e.g., by

publishing part of a secret document.

Basic security theorem

◮ A transition from state v1 to v2 is secure simply if

both states v1 and v2 are secure.

◮ This leads to a rather simple and general theorem:

Basic security theorem

If all state transitions in a system are secure and the

initial state of the system is secure, then every

subsequent state is also secure.

(NB: this follows immediately by induction, it has

nothing to do with the properties of BLP!)

◮ The point: we can reduce checking the system for

all possible inputs to checking that each kind of

possible state transition preserves security. Of

course, to do this we need a concrete instance of

the model which describes possible transitions.

References

See Ch 3–5 of Gollmann, Ch 7–9 of Anderson and

Parts 2–3 of Bishop.

Ross Anderson. Security Engineering: A

Comprehensive Guide to Building Dependable

Distributed Systems.

Wiley & Sons, 2001.

Matt Bishop. Computer Security: Art and Science.

Addison-Wesley, 2003.

Dieter Gollmann. Computer Security.

John Wiley & Sons, second edition, 2006.

Recommended Reading

Sections 4.1, 4.2, 7.1-7.3 of Anderson (1st edition).


