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Introduction

É Previously examined some simple protocols

É Simple authentication using passwords, and shared
keys

É Challenge response with shared (symmetric) keys
É Use of nonces

É This lecture expands and extends these concepts

É Mutual authentication
É Challenge response with public keys
É Authentication and key establishment
É Digital certificates
É More fun with nonces
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Reminder: shared-key unilateral authentication

É Minimal protocol using a random number:

Message 1. S→ A: Ns
Message 2. A→ S: {Ns,S}Kas

É Minimal protocol using timestamps; the
“challenge” is implicit:

Message 1. A→ S: {Ta,S}Kas

É Nonces prevent replay of old messages
É S is included inside the encrypted package to foil a
reflection attack (impersonation of S to A).

É Also, encrypting random strings can be risky: to
prevent a chosen-text attack on the encryption
scheme in the first case, A may include another
random number in the encrypted package.
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Shared-key mutual authentication

É This protocol achieves mutual authentication using
shared keys and nonces:

Message 1. S→ A: Ns
Message 2. A→ S: {Ns,Na,S}Kas
Message 3. S→ A: {Na,Ns }Kas

É The second nonce Na in message 2 serves both as
a challenge for message 3 and to prevent
chosen-text attacks. On receiving message 2, S
checks Ns was the nonce he issued in message 1,
and that his name S is included in the encrypted
package. He also recovers Na to send in message 3.

É Mutual authentication may be obtained by running
unilateral authentication twice, but that achieves
something slightly weaker: the two authentications
are not logically linked by the protocol (TOCTOU).



Shared-key mutual authentication

É This protocol achieves mutual authentication using
shared keys and nonces:

Message 1. S→ A: Ns
Message 2. A→ S: {Ns,Na,S}Kas
Message 3. S→ A: {Na,Ns }Kas

É The second nonce Na in message 2 serves both as
a challenge for message 3 and to prevent
chosen-text attacks. On receiving message 2, S
checks Ns was the nonce he issued in message 1,
and that his name S is included in the encrypted
package. He also recovers Na to send in message 3.

É Mutual authentication may be obtained by running
unilateral authentication twice, but that achieves
something slightly weaker: the two authentications
are not logically linked by the protocol (TOCTOU).



Shared-key mutual authentication

É This protocol achieves mutual authentication using
shared keys and nonces:

Message 1. S→ A: Ns
Message 2. A→ S: {Ns,Na,S}Kas
Message 3. S→ A: {Na,Ns }Kas

É The second nonce Na in message 2 serves both as
a challenge for message 3 and to prevent
chosen-text attacks. On receiving message 2, S
checks Ns was the nonce he issued in message 1,
and that his name S is included in the encrypted
package. He also recovers Na to send in message 3.

É Mutual authentication may be obtained by running
unilateral authentication twice, but that achieves
something slightly weaker: the two authentications
are not logically linked by the protocol (TOCTOU).



Outline

Introduction

Shared-key Authentication

Asymmetric authentication protocols

Key exchange protocols

Combined key exchange and authentication

Summary



Challenge-response with PK decryption
É Designing public-key based protocols is also subtle.
For example, it’s important not to use a key-pair
used for authentication for other purposes, since
combining usages can compromise security.

É First PK approach: Alice demonstrates knowledge of
a private key by decrypting a challenge.

Message 1. S→ A: h(Ns),S,{Ns,S}Ka
Message 2. A→ S: Ns

É Server Sam invents a nonce Ns, and challenges
Alice to discover it.

É He sends a packet containing the nonce encrypted
with her public key Ka and a witness h(Ns), where h
is a one-way hash function, which prevents
chosen-text attacks.

É Alice decrypts, and responds with Ns only if the hash
and name both match. When Sam sees his nonce Ns
returned, Alice is authenticated.
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Challenge-response with digital signatures

É Alice demonstrates knowledge of her signature
private key by signing a challenge.

Message 1. S→ A: Ns
Message 2. A→ S: Na,S, SA(Na,Ns,S)

É Server Sam sends a nonce Ns. Alice replies with a
message containing her own nonce Na, the name S,
and the signature for a message with both nonces
and the name. She constructs the signature using
her private signing function SA.

É If the signature verifies for the plaintext Na,Ns,S,
he considers Alice authenticated.

É In both this case, and the previous slide, we
assume that Sam already has the (correct) public
verification function VA to check Alice’s signatures
(wait for discussion of digital certificates).
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Dealing with keys

É So far: protocols for authentication, assuming
that any keys were securely distributed. But how?

É Many protocols have been designed for
key-exchange. Key exchange usually establishes
short-term session keys, which encrypt individual
conversations, usually with conventional crypto.

É A new key for each conversation is good practice: if
a particular key is used for a long time (or a lot of
data), there is more opportunity for attack.

É Many protocols combine authentication and
key-exchange.
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Dealing with keys . . .

É With symmetric cryptography

É Use a Trusted Third Party (TTP), or
É Can assume that users have fixed long-term keys
which are used to exchange shorter-term session
keys

É For public-key cryptography, using the genuine
public key is crucial (an example of data-origin
authentication). Digital signatures and TTPs come
together to create digital certificates which can
be used to securely distribute public keys.

É Though in this case, the TTP can be off-line from the
key exchange protocol (as opposed to on-line, and
actively participating with the symmetric case), and
is only required to preserve authenticity, and not
confidentiality of key material
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Key-exchange using symmetric crypto

É Usual setting: a TTP, the Key Distribution Centre
(KDC), with whom each principal shares a key.

É Method: Alice tells the KDC (Sam) she’d like to talk
to Bob. Sam generates a new session key, and
encrypts two copies of it: one with Alice’s key and
one with Bob’s key. He sends both copies to Alice.
Alice decrypts her copy, sends Bob his copy, and
then they can communicate securely.

É A particular protocol:

Message 1. A→ S: A,B
Message 2. S→ A: {Kab,T }Kas ,{Kab,T }Kbs
Message 3. A→ B: {Kab,T }Kbs

Here the session key has a timestamp T to indicate
its creation time.
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Key-exchange using PKC
É Hybrid cryptography combines PK crypto for
exchanging a session key with conventional crypto
to communicate using the session key. Two
reasons: (1) PK algorithms are slow, so bad for lots
of data; (2) PK cryptosystems are vulnerable to
chosen-plaintext attacks (since Ee is public).

É Assume that Alice can generate good session keys,
and that she already has Bob’s public key Kb. Then
she can send him the session key Kab and a
message M encrypted with it, in one go (for extra
protection, she could sign and date the message):

A→ B : {Kab }Kb ,{M}Kab
É This requires just a single message (not
interactive), so it works on a store-and-forward
network (e.g., email), or for offline storage.

É Next: how can we be sure that Alice has the right
public key?



Digital Certificates
É A digital certificate bundles a public key and/or
signature verification function with identification
data; the bundle is signed by a trusted
certification authority (CA) who verified the data.

É E.g., a certificate for Bob may take the form:

CB =M,SCA(M) where M = (Ts,Te,B,VB)

where SCA is the CA’s signing function; Ts,Te are
start-time and end-time of validity.

É Compared with a secure directory of public keys,
this protects against MITM attacks; only the CA’s
verification function needs to be distributed
securely. (But the CA’s private signing key becomes
a critical vulnerability.)

É X.509 uses this model. Each certificate is signed by
one CA, and there is a chain of certificates until a
root or self-signed certificate is reached. Common
root certificates are built into web browsers.
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Key-exchange using certificates
Here is a way to exchange a session key using
certificates. First, Alice asks the server Sam for her
certificate and Bob’s certificate. Then she generates a
session key Kab and a timestamp Ta to send to Bob. She
signs these with her signing function SA, encrypts them
with Bob’s public key, and sends them to him together
with the certificates.

Message 1. A→ S: A,B
Message 2. S→ A: Ca,Cb
Message 3. A→ B: Ca,Cb,{Kab,Ta, SA(Kab,Ta)}Kb

Denning and Sacco proposed this key-exchange
protocol in 1981. In 1994, Abadi and Needham pointed
out a fatal flaw. That a serious flaw went unnoticed for
so long in such a simple protocol shows quite how
delicate protocol design is, and suggests that formal
analysis is called for. Can you guess what the flaw is?
(Hint: consider signed packet)
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Key-exchange with authentication
É It makes sense to combine key-exchange with
authentication. A direct way to achieve this is by
adding names to the (symmetric key) protocol for
key exchange given earlier:

Message 1. A→ S: A,B
Message 2. S→ A: {A,B,Kab,T }Kas ,{A,B,Kab,T }Kbs
Message 3. A→ B: {A,B,Kab,T }Kbs
Instead of encrypting just the key Kab and
timestamp T, Sam sends a package containing the
names A, B as well. The names allow Alice and Bob
to verify they’re talking to the right people,
providing authentication.

É Protocols of this kind have been much studied, with
variations using nonces instead of time stamps,
changing the pattern of communications, or trying
to optimise the communications.

É Some examples follow. . .
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variations using nonces instead of time stamps,
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to optimise the communications.

É Some examples follow. . .
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Wide-mouthed frog
É Probably the simplest symmetric key management
protocol using a trusted server. Relies on
synchronized clocks and the assumption that Alice
can generate good keys.

Message 1. A→ S: A,{Ta,B,Kab }Kas
Message 2. S→ B: {Ts,A,Kab }Kbs

É In 1, Alice concatenates a timestamp, Bob’s name,
a random session key, and encrypts under her key
shared with Sam.

É Sam decrypts the message from Alice and checks
that the message is timely. Then he concatenates a
new timestamp, Alice’s name, and the key. He
encrypts this under the key he shares with Bob, and
sends the package along to Bob in Message 2.

É Bob decrypts this message, and checks that
message contains a newer timestamp than any
seen before. If so, he accepts the session key.
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The Needham-Schroeder protocol (flawed)

A protocol using nonces and a server to generate keys.

Message 1. A→ S: A,B,Na

Message 2. S→ A: {Na,B,Kab,{Kab,A}Kbs }Kas
Message 3. A→ B: {Kab,A}Kbs
Message 4. B→ A: {Nb }Kab
Message 5. A→ B: {Nb − 1}Kab

(1) A makes contact with the server

who (2) provides
the session key Kab and a package for transmission to B
containing the same key. Then (3) A transmits the
package to B, and B initiates a handshake with A (4)
using Nb to prevent replay. The final message from A
uses Nb − 1 to distinguish it from the previous message
from B.
Can you guess what the flaw is? (Hint: consider if a
session key Kab is broken)
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Kerberos (simplified V4)
É A repaired version of Needham-Schroeder, using
synchronized clocks and trusted servers. Used in
Windows 2000 (& DICE).

É Scenario: Alice wishes to access a resource B. First
she must log in to the authentication server to get
a ticket-granting ticket (TGT), which is encrypted
with her secret key. It contains a session key Kab for
Alice to use with a ticket-granting server (TGS).

É Alice contacts TGS S and asks to access B. It grants
her a ticket for using B with a limited duration. She
passes this to B, with an authenticator. Optional: B
replies for mutual authentication.

Message 1. A→ S: A,B
Message 2. S→ A: {Ts,L,Kab,B, {Ts,L,Kab,A}Kbs }Kas
Message 3. A→ B: {Ts,L,Kab,A}Kbs ,{A,Ta }Kab
Message 4. B→ A: {Ta + 1}Kab
Here, Ts and Ta are timestamps, and L is a lifetime.
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Protocols: summary
É Weak authentication protocols (e.g., traditional
passwords). Stored time-invariant secrets or hashes
of secrets. Added salt.

É Strong authentication protocols.
Challenge-response with time-variant parameters
(nonces or timestamps) to guarantee freshness
and prevent replay attacks. Shared key and public
key protocols, demonstrating knowledge of keys.
Another kind of authentication protocol we haven’t
looked at (yet): zero-knowledge protocols, are
based on demonstrating knowledge without giving
way any further information, provably.

É Key-exchange protocols. Using shared keys,
public keys, and digital signatures/certificates.

É Key-exchange and authentication protocols.
Using shared keys, public keys. Well-known ones
are Kerberos and Needham-Schroeder.
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