
Protocols I
Computer Security Lecture 7

Mike Just1

School of Informatics
University of Edinburgh

1st February 2010

1Based on original lecture notes by David Aspinall



Outline

Introducing protocols

Simple authentication

Password security

Authentication with shared keys

Simple shared-key authentication

Challenge and response

Timestamps



Outline

Introducing protocols

Simple authentication

Password security

Authentication with shared keys

Simple shared-key authentication

Challenge and response

Timestamps



Protocols and attacks

◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.



Protocols and attacks

◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.
◮ Protocols may be 1-pass or multi-pass.



Protocols and attacks

◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.
◮ Protocols may be 1-pass or multi-pass.

◮ Principals: people, organizations, systems, . . .



Protocols and attacks

◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.
◮ Protocols may be 1-pass or multi-pass.

◮ Principals: people, organizations, systems, . . .
◮ The objective may be authentication, exchange
of secrets, or some larger task.



Protocols and attacks

◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.
◮ Protocols may be 1-pass or multi-pass.

◮ Principals: people, organizations, systems, . . .
◮ The objective may be authentication, exchange
of secrets, or some larger task.
◮ Authentication may be unilateral or mutual.



Protocols and attacks

◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.
◮ Protocols may be 1-pass or multi-pass.

◮ Principals: people, organizations, systems, . . .
◮ The objective may be authentication, exchange
of secrets, or some larger task.
◮ Authentication may be unilateral or mutual.

◮ Protocols have been one of the richest areas of

study in computer security research (design,

verification, and breaking).



Protocols and attacks

◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.
◮ Protocols may be 1-pass or multi-pass.

◮ Principals: people, organizations, systems, . . .
◮ The objective may be authentication, exchange
of secrets, or some larger task.
◮ Authentication may be unilateral or mutual.

◮ Protocols have been one of the richest areas of

study in computer security research (design,

verification, and breaking).

◮ Part of the interest comes because protocols can be

carefully designed, yet still have surprising flaws. A

“flaw” means that the protocol can be attacked in

a way that the designer did not intend or imagine.



Protocols and attacks

◮ A security protocol is a sequence of
communications that two or more principals
undertake to achieve a security objective.
◮ Protocols may be 1-pass or multi-pass.

◮ Principals: people, organizations, systems, . . .
◮ The objective may be authentication, exchange
of secrets, or some larger task.
◮ Authentication may be unilateral or mutual.

◮ Protocols have been one of the richest areas of

study in computer security research (design,

verification, and breaking).

◮ Part of the interest comes because protocols can be

carefully designed, yet still have surprising flaws. A

“flaw” means that the protocol can be attacked in

a way that the designer did not intend or imagine.

◮ This lecture introduces some simple protocols and

common flaws.



Understanding Protocols

◮ To understand a protocol, you need to think

carefully about the underlying assumptions, the

initial setup and what happens at each stage.



Understanding Protocols

◮ To understand a protocol, you need to think

carefully about the underlying assumptions, the

initial setup and what happens at each stage.

◮ Usual assumptions include:



Understanding Protocols

◮ To understand a protocol, you need to think

carefully about the underlying assumptions, the

initial setup and what happens at each stage.

◮ Usual assumptions include:
◮ secrets are known only by those intended



Understanding Protocols

◮ To understand a protocol, you need to think

carefully about the underlying assumptions, the

initial setup and what happens at each stage.

◮ Usual assumptions include:
◮ secrets are known only by those intended
◮ the Dolev-Yao model of an attacker: may read,
delete, copy and synthesise messages (but not,
e.g., break encryption)



Understanding Protocols

◮ To understand a protocol, you need to think

carefully about the underlying assumptions, the

initial setup and what happens at each stage.

◮ Usual assumptions include:
◮ secrets are known only by those intended
◮ the Dolev-Yao model of an attacker: may read,
delete, copy and synthesise messages (but not,
e.g., break encryption)

◮ At each step in the protocol, the beliefs of

participants change. If something goes wrong,

the protocol is aborted.



Understanding Protocols

◮ To understand a protocol, you need to think

carefully about the underlying assumptions, the

initial setup and what happens at each stage.

◮ Usual assumptions include:
◮ secrets are known only by those intended
◮ the Dolev-Yao model of an attacker: may read,
delete, copy and synthesise messages (but not,
e.g., break encryption)

◮ At each step in the protocol, the beliefs of

participants change. If something goes wrong,

the protocol is aborted.

◮ This reasoning can be made formal with specialised

logics and calculi for reasoning about protocol

correctness. Formal protocol analysis has been a

big success, uncovering flaws in real protocols that

had been hidden for many years.



Authentication Protocols

◮ Authentication protocols are a common type of

protocol familiar to most users



Authentication Protocols

◮ Authentication protocols are a common type of

protocol familiar to most users

◮ The protocols are often characterized based upon
the thing used to achieve successful authentication



Authentication Protocols

◮ Authentication protocols are a common type of

protocol familiar to most users

◮ The protocols are often characterized based upon
the thing used to achieve successful authentication

1. “Something you are” including biometrics such as
fingerprints, iris scans, face recognition, key typing
behaviour, . . .



Authentication Protocols

◮ Authentication protocols are a common type of

protocol familiar to most users

◮ The protocols are often characterized based upon
the thing used to achieve successful authentication

1. “Something you are” including biometrics such as
fingerprints, iris scans, face recognition, key typing
behaviour, . . .

2. “Something you have” including hard tokens such
as smartcards and mobile phones, as well as soft
tokens, or files of information used for
authentication



Authentication Protocols

◮ Authentication protocols are a common type of

protocol familiar to most users

◮ The protocols are often characterized based upon
the thing used to achieve successful authentication

1. “Something you are” including biometrics such as
fingerprints, iris scans, face recognition, key typing
behaviour, . . .

2. “Something you have” including hard tokens such
as smartcards and mobile phones, as well as soft
tokens, or files of information used for
authentication

3. “Something you know” including passwords, PINs,
passphrases, challenge questions, . . .



Authentication Protocols

◮ Authentication protocols are a common type of

protocol familiar to most users

◮ The protocols are often characterized based upon
the thing used to achieve successful authentication

1. “Something you are” including biometrics such as
fingerprints, iris scans, face recognition, key typing
behaviour, . . .

2. “Something you have” including hard tokens such
as smartcards and mobile phones, as well as soft
tokens, or files of information used for
authentication

3. “Something you know” including passwords, PINs,
passphrases, challenge questions, . . .

◮ When multiple (independent) methods are used

simultaneously, it is called a multi-factor

authentication protocol



Outline

Introducing protocols

Simple authentication

Password security

Authentication with shared keys

Simple shared-key authentication

Challenge and response

Timestamps



Password authentication

◮ The most common protocol most users know is

logging in to a computer system, by giving a

username and password.



Password authentication

◮ The most common protocol most users know is

logging in to a computer system, by giving a

username and password.

◮ There are two principals involved: Alice (A) and the

server (S). Alice sends the server her login name

alice and password b1aZfa9s. In protocol

notation,
A→ S: A, P

Alice’s (login) name is also written as A, and P

stands for her password. Diagrammatically:



Password authentication

◮ The most common protocol most users know is

logging in to a computer system, by giving a

username and password.

◮ There are two principals involved: Alice (A) and the

server (S). Alice sends the server her login name

alice and password b1aZfa9s. In protocol

notation,
A→ S: A, P

Alice’s (login) name is also written as A, and P

stands for her password. Diagrammatically:

A S

A,P



Password authentication

◮ The most common protocol most users know is

logging in to a computer system, by giving a

username and password.

◮ There are two principals involved: Alice (A) and the

server (S). Alice sends the server her login name

alice and password b1aZfa9s. In protocol

notation,
A→ S: A, P

Alice’s (login) name is also written as A, and P

stands for her password. Diagrammatically:

A S

A,P

◮ The server then verifies Alice’s password, and if it is

correct, it lets her in to the system.



Password authentication - Points of Attack

◮ At Alice



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server
◮ Impersonation (online guessing)



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server
◮ Impersonation (online guessing)
◮ Denial of Service (DoS)



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server
◮ Impersonation (online guessing)
◮ Denial of Service (DoS)

◮ At the Server’s database



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server
◮ Impersonation (online guessing)
◮ Denial of Service (DoS)

◮ At the Server’s database
◮ Theft



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server
◮ Impersonation (online guessing)
◮ Denial of Service (DoS)

◮ At the Server’s database
◮ Theft
◮ Offline guessing



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server
◮ Impersonation (online guessing)
◮ Denial of Service (DoS)

◮ At the Server’s database
◮ Theft
◮ Offline guessing
◮ Alter information



Password authentication - Points of Attack

◮ At Alice
◮ Shoulder surfing (visual/video or auditory/audio)
◮ Social engineering (e.g., phishing)
◮ Server impersonation to Alice (phony web site, or
fake login device)

◮ On communication channel
◮ Eavesdropping

◮ At the Server
◮ Impersonation (online guessing)
◮ Denial of Service (DoS)

◮ At the Server’s database
◮ Theft
◮ Offline guessing
◮ Alter information
◮ Delete information



Understanding password authentication

◮ Initial assumptions: Alice’s password is a shared

secret: it is known only to Alice and the server and

neither party reveal the secret to anyone else.



Understanding password authentication

◮ Initial assumptions: Alice’s password is a shared

secret: it is known only to Alice and the server and

neither party reveal the secret to anyone else.

◮ Provided the protocol is secure so that this

confidentiality is maintained while she logs in, then

an attacker cannot ever learn Alice’s password.



Understanding password authentication

◮ Initial assumptions: Alice’s password is a shared

secret: it is known only to Alice and the server and

neither party reveal the secret to anyone else.

◮ Provided the protocol is secure so that this

confidentiality is maintained while she logs in, then

an attacker cannot ever learn Alice’s password.

◮ Therefore, a principal demonstrating knowledge of

Alice’s password to the server will authenticate

themselves as Alice to the server.



Understanding password authentication

◮ Initial assumptions: Alice’s password is a shared

secret: it is known only to Alice and the server and

neither party reveal the secret to anyone else.

◮ Provided the protocol is secure so that this

confidentiality is maintained while she logs in, then

an attacker cannot ever learn Alice’s password.

◮ Therefore, a principal demonstrating knowledge of

Alice’s password to the server will authenticate

themselves as Alice to the server.

◮ This is the only step in this one-message protocol.



Understanding password authentication

◮ Initial assumptions: Alice’s password is a shared

secret: it is known only to Alice and the server and

neither party reveal the secret to anyone else.

◮ Provided the protocol is secure so that this

confidentiality is maintained while she logs in, then

an attacker cannot ever learn Alice’s password.

◮ Therefore, a principal demonstrating knowledge of

Alice’s password to the server will authenticate

themselves as Alice to the server.

◮ This is the only step in this one-message protocol.

◮ But, there are questions:



Understanding password authentication

◮ Initial assumptions: Alice’s password is a shared

secret: it is known only to Alice and the server and

neither party reveal the secret to anyone else.

◮ Provided the protocol is secure so that this

confidentiality is maintained while she logs in, then

an attacker cannot ever learn Alice’s password.

◮ Therefore, a principal demonstrating knowledge of

Alice’s password to the server will authenticate

themselves as Alice to the server.

◮ This is the only step in this one-message protocol.

◮ But, there are questions:
◮ But how does the server verify her password?



Understanding password authentication

◮ Initial assumptions: Alice’s password is a shared

secret: it is known only to Alice and the server and

neither party reveal the secret to anyone else.

◮ Provided the protocol is secure so that this

confidentiality is maintained while she logs in, then

an attacker cannot ever learn Alice’s password.

◮ Therefore, a principal demonstrating knowledge of

Alice’s password to the server will authenticate

themselves as Alice to the server.

◮ This is the only step in this one-message protocol.

◮ But, there are questions:
◮ But how does the server verify her password?
◮ And how does her password get sent to the server?



Password Security

◮ The server may keep a password file of user names

and plaintext passwords, and use lookup:



Password Security

◮ The server may keep a password file of user names

and plaintext passwords, and use lookup:

alice b1aZfa9s



Password Security

◮ The server may keep a password file of user names

and plaintext passwords, and use lookup:

alice b1aZfa9s



Password Security

◮ The server may keep a password file of user names

and plaintext passwords, and use lookup:

alice b1aZfa9s

Vulnerability: file stolen =⇒ all passwords break.

◮ Improvement: use a one-way hash function h.

This is a cryptographic primitive that acts as a

“digital fingerprint”.



Password Security

◮ The server may keep a password file of user names

and plaintext passwords, and use lookup:

alice b1aZfa9s

Vulnerability: file stolen =⇒ all passwords break.

◮ Improvement: use a one-way hash function h.

This is a cryptographic primitive that acts as a

“digital fingerprint”.

◮ The server stores hashes of passwords, not plain

texts. To verify Alice’s password, the server checks

h(P) against the stored hash h(P0). If the two

match, then (almost certainly), P = P0.



Password Security

◮ The server may keep a password file of user names

and plaintext passwords, and use lookup:

alice b1aZfa9s

Vulnerability: file stolen =⇒ all passwords break.

◮ Improvement: use a one-way hash function h.

This is a cryptographic primitive that acts as a

“digital fingerprint”.

◮ The server stores hashes of passwords, not plain

texts. To verify Alice’s password, the server checks

h(P) against the stored hash h(P0). If the two

match, then (almost certainly), P = P0.

alice VUhUKC1OTUzKSVUoKE3Ky



Password Security

◮ The server may keep a password file of user names

and plaintext passwords, and use lookup:

alice b1aZfa9s

Vulnerability: file stolen =⇒ all passwords break.

◮ Improvement: use a one-way hash function h.

This is a cryptographic primitive that acts as a

“digital fingerprint”.

◮ The server stores hashes of passwords, not plain

texts. To verify Alice’s password, the server checks

h(P) against the stored hash h(P0). If the two

match, then (almost certainly), P = P0.

alice VUhUKC1OTUzKSVUoKE3Ky

◮ This is more secure than before: anyone who reads

the file does not immediately learn all passwords.



Better password security

◮ Password files containing hashes are still

vulnerable. For an 8 character ASCII password,

brute-force attack needs to check about 253 (1016)

combinations. Inconvenient but not infeasible.



Better password security

◮ Password files containing hashes are still

vulnerable. For an 8 character ASCII password,

brute-force attack needs to check about 253 (1016)

combinations. Inconvenient but not infeasible.

◮ More convenient are dictionary attacks, a form of

intelligent search which reduces search space to

mere millions (220). Work by exploiting the

propensity of users to pick passwords related to

common words, personal details, etc. Nowadays,

password crackers are used to prevent a variety

bad choices.



Better password security

◮ Password files containing hashes are still

vulnerable. For an 8 character ASCII password,

brute-force attack needs to check about 253 (1016)

combinations. Inconvenient but not infeasible.

◮ More convenient are dictionary attacks, a form of

intelligent search which reduces search space to

mere millions (220). Work by exploiting the

propensity of users to pick passwords related to

common words, personal details, etc. Nowadays,

password crackers are used to prevent a variety

bad choices.

◮ Dictionary attacks which precompute many hash

values can be thwarted by adding salt to

passwords. Salt is a random number that is

combined with the password before applying the

hash, and stored along with the result. Still doesn’t

stop a determined attack on a single password.



Securely Communicating the Key

◮ Password authentication has another vulnerability:

the plaintext password must either be sent along a

secure channel before it is verified, or be unique

at each protocol instance to prevent eavesdroppers

learning it.



Securely Communicating the Key

◮ Password authentication has another vulnerability:

the plaintext password must either be sent along a

secure channel before it is verified, or be unique

at each protocol instance to prevent eavesdroppers

learning it.

◮ One-time passwords can be used to provide
uniqueness as per the following three options



Securely Communicating the Key

◮ Password authentication has another vulnerability:

the plaintext password must either be sent along a

secure channel before it is verified, or be unique

at each protocol instance to prevent eavesdroppers

learning it.

◮ One-time passwords can be used to provide
uniqueness as per the following three options

1. The user could be assigned a sheet of paper with
100 one-time passwords: P1, P2, . . . , P100.



Securely Communicating the Key

◮ Password authentication has another vulnerability:

the plaintext password must either be sent along a

secure channel before it is verified, or be unique

at each protocol instance to prevent eavesdroppers

learning it.

◮ One-time passwords can be used to provide
uniqueness as per the following three options

1. The user could be assigned a sheet of paper with
100 one-time passwords: P1, P2, . . . , P100.

2. (Lamport or S/Key) Server initially stores h100(P). At
round i, the server will have hn−i+1(P), and Alice
submits hn−i(P). The server verifies with the store
value by computing h(hn−i(P)) and if correct, stores
hn−i(P).



Securely Communicating the Key

◮ Password authentication has another vulnerability:

the plaintext password must either be sent along a

secure channel before it is verified, or be unique

at each protocol instance to prevent eavesdroppers

learning it.

◮ One-time passwords can be used to provide
uniqueness as per the following three options

1. The user could be assigned a sheet of paper with
100 one-time passwords: P1, P2, . . . , P100.

2. (Lamport or S/Key) Server initially stores h100(P). At
round i, the server will have hn−i+1(P), and Alice
submits hn−i(P). The server verifies with the store
value by computing h(hn−i(P)) and if correct, stores
hn−i(P).

3. (SecureID) Uses a token device which computes a
new “password” every minute by computing a hash
of the current time (to a granularity of minutes), and
a secret key stored on the device.



Outline

Introducing protocols

Simple authentication

Password security

Authentication with shared keys

Simple shared-key authentication

Challenge and response

Timestamps



Simple shared-key authentication

◮ With an unsecured channel, we may instead use

shared keys.



Simple shared-key authentication

◮ With an unsecured channel, we may instead use

shared keys.

◮ Suppose that we have an in-car device C, which is a

congestion-charging transmitter in a car window

screen. C wishes to identify itself to a server S in an

overhead charging point, which clocks cars passing.



Simple shared-key authentication

◮ With an unsecured channel, we may instead use

shared keys.

◮ Suppose that we have an in-car device C, which is a

congestion-charging transmitter in a car window

screen. C wishes to identify itself to a server S in an

overhead charging point, which clocks cars passing.



Simple shared-key authentication

◮ With an unsecured channel, we may instead use

shared keys.

◮ Suppose that we have an in-car device C, which is a

congestion-charging transmitter in a car window

screen. C wishes to identify itself to a server S in an

overhead charging point, which clocks cars passing.

Suppose that C and S share a secret key Kcs. The

in-car device might send a message with its name

(a secret serial number) and an encrypted copy of

its name, perhaps with some additional relevant

data R (e.g., the time since it last passed a

charge-point).



Protocol for shared-key authentication

C→ S : C,{C,R}Kcs

(the notation {C,R}Kcs stands for the combination of C

and the rest R encrypted under the key Kcs).
◮ How does this work?



Protocol for shared-key authentication

C→ S : C,{C,R}Kcs

(the notation {C,R}Kcs stands for the combination of C

and the rest R encrypted under the key Kcs).
◮ How does this work?

1. S uses plaintext name C to find the key it shares
with C, Kcs.



Protocol for shared-key authentication

C→ S : C,{C,R}Kcs

(the notation {C,R}Kcs stands for the combination of C

and the rest R encrypted under the key Kcs).
◮ How does this work?

1. S uses plaintext name C to find the key it shares
with C, Kcs.

2. S attempts to decrypt the rest of the message using
Kcs. If successful, S concludes that C is the device it
is claiming to be.



Protocol for shared-key authentication

C→ S : C,{C,R}Kcs

(the notation {C,R}Kcs stands for the combination of C

and the rest R encrypted under the key Kcs).
◮ How does this work?

1. S uses plaintext name C to find the key it shares
with C, Kcs.

2. S attempts to decrypt the rest of the message using
Kcs. If successful, S concludes that C is the device it
is claiming to be.

◮ Why is C duplicated in the message?



Protocol for shared-key authentication

C→ S : C,{C,R}Kcs

(the notation {C,R}Kcs stands for the combination of C

and the rest R encrypted under the key Kcs).
◮ How does this work?

1. S uses plaintext name C to find the key it shares
with C, Kcs.

2. S attempts to decrypt the rest of the message using
Kcs. If successful, S concludes that C is the device it
is claiming to be.

◮ Why is C duplicated in the message?
◮ This prevents a reflection attack. If the protocol
worked the other way around as well, it would
prevent message being re-used immediately by an
adversary, on C.



Protocol for shared-key authentication

C→ S : C,{C,R}Kcs

(the notation {C,R}Kcs stands for the combination of C

and the rest R encrypted under the key Kcs).
◮ How does this work?

1. S uses plaintext name C to find the key it shares
with C, Kcs.

2. S attempts to decrypt the rest of the message using
Kcs. If successful, S concludes that C is the device it
is claiming to be.

◮ Why is C duplicated in the message?
◮ This prevents a reflection attack. If the protocol
worked the other way around as well, it would
prevent message being re-used immediately by an
adversary, on C.

◮ Are there any other problems?



Protocol for shared-key authentication

C→ S : C,{C,R}Kcs

(the notation {C,R}Kcs stands for the combination of C

and the rest R encrypted under the key Kcs).
◮ How does this work?

1. S uses plaintext name C to find the key it shares
with C, Kcs.

2. S attempts to decrypt the rest of the message using
Kcs. If successful, S concludes that C is the device it
is claiming to be.

◮ Why is C duplicated in the message?
◮ This prevents a reflection attack. If the protocol
worked the other way around as well, it would
prevent message being re-used immediately by an
adversary, on C.

◮ Are there any other problems?
◮ It is vulnerable to replay attacks. A device which
captures and replays messages from windscreen
beamers, they could rack up huge charges on
another bill!



The need for nonces

◮ To prevent a replay attack, we need a method to

ensure that messages are fresh.

◮ We can do this using nonces (“number used

once”).

◮ A nonce is a random number or a sequence

number. The server S maintains a list of messages

it has seen (or if the nonce is a sequence number,

just the last value), and ignores those that have

gone before.



Remembering nonces

With a nonce N in the protocol, we now have:

C→ S : C,{C,N,R}Kcs



Remembering nonces

With a nonce N in the protocol, we now have:

C→ S : C,{C,N,R}Kcs

◮ This works, but has engineering drawbacks. The

server S must remember a reasonable history of

past messages, or the last value of the counter.



Remembering nonces

With a nonce N in the protocol, we now have:

C→ S : C,{C,N,R}Kcs

◮ This works, but has engineering drawbacks. The

server S must remember a reasonable history of

past messages, or the last value of the counter.

◮ But the counter may be distributed or may get

incremented several times during faulty

transmissions, etc. Can we remove the need to

remember nonces?



Remembering nonces

With a nonce N in the protocol, we now have:

C→ S : C,{C,N,R}Kcs

◮ This works, but has engineering drawbacks. The

server S must remember a reasonable history of

past messages, or the last value of the counter.

◮ But the counter may be distributed or may get

incremented several times during faulty

transmissions, etc. Can we remove the need to

remember nonces?

◮ A solution is to introduce a two-way

communication, based on challenge and

response.



Challenge and response

Now the nonce is generated randomly by the server,

and neither side needs to keep any (long-term) state:

Message 1. S→ C: N

Message 2. C→ S: C,{C,N,R}Kcs

◮ Many protocols are based on this basic

challenge-response idea, using nonces to

guarantee freshness.



Challenge and response

Now the nonce is generated randomly by the server,

and neither side needs to keep any (long-term) state:

Message 1. S→ C: N

Message 2. C→ S: C,{C,N,R}Kcs

◮ Many protocols are based on this basic

challenge-response idea, using nonces to

guarantee freshness.

◮ But challenge-response protocols are open to

another form of attack, the man-in-the-middle

attack (or to be politically correct, the

middleperson attack).



Man-in-the-middle attacks

◮ In the car congestion charging scenario, suppose

somebody builds a device which attaches to their

back windscreen and charges the car behind them

as they pass the barrier, simply by passing the

communications back and forth.



Man-in-the-middle attacks

◮ In the car congestion charging scenario, suppose

somebody builds a device which attaches to their

back windscreen and charges the car behind them

as they pass the barrier, simply by passing the

communications back and forth.

◮ To show this explicitly, let M be the middleperson:

Message 1. S→M: N

Message 1’. M→ C: N

Message 2. C→ M: C,{C,N,R}Kcs
Message 2’. M→ S: C,{C,N,R}Kcs



Man-in-the-middle attacks

◮ In the car congestion charging scenario, suppose

somebody builds a device which attaches to their

back windscreen and charges the car behind them

as they pass the barrier, simply by passing the

communications back and forth.

◮ To show this explicitly, let M be the middleperson:

Message 1. S→M: N

Message 1’. M→ C: N

Message 2. C→ M: C,{C,N,R}Kcs
Message 2’. M→ S: C,{C,N,R}Kcs

◮ The charges are passed to the car behind!



Man-in-the-middle attacks

◮ In the car congestion charging scenario, suppose

somebody builds a device which attaches to their

back windscreen and charges the car behind them

as they pass the barrier, simply by passing the

communications back and forth.

◮ To show this explicitly, let M be the middleperson:

Message 1. S→M: N

Message 1’. M→ C: N

Message 2. C→ M: C,{C,N,R}Kcs
Message 2’. M→ S: C,{C,N,R}Kcs

◮ The charges are passed to the car behind!

◮ Notice that M here is particularly stupid, and needs

to understand nothing in the transmitted messages.



Foiling man-in-the-middle

◮ Man-in-the-middle attacks as passive and direct as

the simple case above can be difficult to foil: the

server on the overhead charging point may have no

way of telling that it is not talking directly to the car

that’s actually passing.



Foiling man-in-the-middle

◮ Man-in-the-middle attacks as passive and direct as

the simple case above can be difficult to foil: the

server on the overhead charging point may have no

way of telling that it is not talking directly to the car

that’s actually passing.

◮ One approach: timestamps instead of nonces, and

check that messages are sent within tight time

constraints. But in this case we would probably rely

on other techniques, e.g. secondary authentication

by number plate recognition, or at the least, good

recording mechanisms so that accountability is

maintained (somebody later questions their bill).



Foiling man-in-the-middle

◮ Man-in-the-middle attacks as passive and direct as

the simple case above can be difficult to foil: the

server on the overhead charging point may have no

way of telling that it is not talking directly to the car

that’s actually passing.

◮ One approach: timestamps instead of nonces, and

check that messages are sent within tight time

constraints. But in this case we would probably rely

on other techniques, e.g. secondary authentication

by number plate recognition, or at the least, good

recording mechanisms so that accountability is

maintained (somebody later questions their bill).

◮ Other middleperson attacks are more sophisticated,

e.g., typically the middle person taking an active

role in decrypting and re-encrypting messages.

Some of these other attacks do have defences in

protocols.



Timestamps

◮ Using timestamps in place of nonces provides

timeliness and uniqueness guarantees, preventing

replay. Additionally, they may provide time-limited

access privileges, or detect forced delays.



Timestamps

◮ Using timestamps in place of nonces provides

timeliness and uniqueness guarantees, preventing

replay. Additionally, they may provide time-limited

access privileges, or detect forced delays.

◮ General method: A generates a timestamp Ta from

her local clock, and binds it cryptographically in a

message sent to B. On receipt, B compares the

time against his own local clock, and accepts the

message if (1) the difference is within some

acceptance window, and optionally (2) no identical

timestamp has previously been received.



Timestamps

◮ Using timestamps in place of nonces provides

timeliness and uniqueness guarantees, preventing

replay. Additionally, they may provide time-limited

access privileges, or detect forced delays.

◮ General method: A generates a timestamp Ta from

her local clock, and binds it cryptographically in a

message sent to B. On receipt, B compares the

time against his own local clock, and accepts the

message if (1) the difference is within some

acceptance window, and optionally (2) no identical

timestamp has previously been received.
◮ Pros: reduced number of messages; no requirement

to maintain (possibly pairwise) state information.



Timestamps

◮ Using timestamps in place of nonces provides

timeliness and uniqueness guarantees, preventing

replay. Additionally, they may provide time-limited

access privileges, or detect forced delays.

◮ General method: A generates a timestamp Ta from

her local clock, and binds it cryptographically in a

message sent to B. On receipt, B compares the

time against his own local clock, and accepts the

message if (1) the difference is within some

acceptance window, and optionally (2) no identical

timestamp has previously been received.
◮ Pros: reduced number of messages; no requirement

to maintain (possibly pairwise) state information.

◮ Cons: clocks are required to be (“loosely”)

synchronized; state required for storing observed

timestamps; synchronization itself may require

secure authenticated protocols. . .



References

Interesting treatments of security protocols are given in

Chapter 2 of Anderson and Chapters 3–5 of Schneier.

Ross Anderson.

Security Engineering: A Comprehensive Guide to

Building Dependable Distributed Systems.

Wiley & Sons, 2001.

Bruce Schneier.

Applied Cryptography.

John Wiley & Sons, second edition, 1996.

Recommended Reading

Chapter 2 of Anderson.


	Outline
	Introducing protocols
	Simple authentication
	Password security

	Authentication with shared keys
	Simple shared-key authentication
	Challenge and response
	Timestamps


