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» A hash function is a computationally efficient
function h: {0, 1}* — {0, 1}¥ which compresses
any arbitrary length binary string to a fixed size
k-length binary hash value (or hash for short).

» A good hash function distributes values uniformly:
the probability that a randomly chosen string s gets
mapped to a particular hash y is 2—1k

» A cryptographic hash function must satisfy
some further properties, e.g.:
1. it should be difficult to invert;
2. it should be difficult to find a second input that
hashes to the same value as another input;
3. it should be difficult to find any two inputs that hash
to the same value.

depending on the application.



Hash function basics ...

» There are several applications of hash functios

» Integrity: Alice sends m, h(m) (or alternatively,
Ex(m|lh(m))) to Bob. (NB: Don't assume that
encryption, on its own, provides confidentiality).

» Confidentiality: An Authentication Server stores a
user’s password p as h(p).

» And others: confirmation of knowledge (e.qg.,
password), key derivation, pseudo-random number
generation, ...

» On their own, hash functions don’t protect against
» Malicious repetition of data, e.qg., repeating a £100
bank deposit
» Dishonestly repudiation, e.g., denying sending a
hashed email message using a hash function
» Nor do they support message recovery, i.e.,
recovering the original message after tampering

» Hash functions are intended to protect against
malicious modification
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Preimage Resistance (One-way)

h is preimage resistant if given a hash value y, it is
computationally infeasible to find an x such that

h(x)=y.

A

2nd Preimage Resistance (Weak Collision Resistance)

h is 2nd preimage resistant if given a value x; and
its hash h(xy), it is computationally infeasible to find
another x» such that h(xz) = h(x1).

| A\

(Strong) Collision Resistance

h is collision resistant if it is computationally
infeasible to find any two inputs x; and x, such that
h(x1) = h(x2).

\
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Modification Detection Codes

» The main application of hash functions is as
Modification Detection Codes to provide data
integrity.

» A hash h(x) provides a short message digest, a
“fingerprint” of some possibly large data x. If the
data is altered, the digest should become invalid.

» This allows the data (but not the hash!) to be stored
in an unsecured place.
» If x is altered to x’, we hope h(x) # h(x’), so it can
be detected.
» This is useful especially where malicious alteration
is a concern, e.qg., software distribution.

» Ordinary hash functions such as CRC-checkers
produce checksums which are not 2nd preimage
resistant: an attacker could produce a hacked
version of a software product and ensure the
checksum remained the same.
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Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

» A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

» In practice, CRHF usually satisfies preimage
resistance.

» CRHFs are harder to construct than OWHFs and
have longer length hash values.

» Choice between OWHF and CRHF depends on
application:
» If attacker can control input, CRHF required.
» Otherwise OWHF suffices

» Ex: which is needed for password file security?



Message Authentication Codes

» Message Authentication Codes are keyed hash
functions, indexed with a secret key.

> As well as data integrity, they provide data-origin
authentication, because it is assumed that apart
from the recipient, only the sender knows the secret
key necessary to compute the MAC.

» A MAC is a key-indexed family of hash functions,

{hk | k € K}. MACs must satisfy a computation
resistance property.

Computation Resistance

Given a set of pairs (x;, hg(x;)) it is computationally
infeasible to find any other text-MAC pair (x, kg(x)) for a
new input x # Xx;.
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Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
Sketch proof [HAC]:

» Let h be CR, but suppose it is not 2nd PI.

» Fix some input x; compute h(x).

» Since not 2nd PI, we can find an x’ # x with

h(x’) = h(x).

» But now (x, x’) is a collision, so h cannot be CR.
This and similar arguments (e.g., see Smart) can be
made precise using the Random Oracle Model.

Collision resistance does not imply preimage
resistance

Contrived counterexample:

v

v

v

v

[ 1]]x if x has length n
h(x) = { 0 || g(x) otherwise



Collision Resistance and Birthday Attacks

» To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).



Collision Resistance and Birthday Attacks

» To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).

» Drawing random elements with replacement from a
set of k elements, a repeat is likely after about vk
selections.



Collision Resistance and Birthday Attacks

» To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).

» Drawing random elements with replacement from a
set of k elements, a repeat is likely after about vk
selections.

» Mallory has two contracts, one for £1000, the other
£100,000, to be signed with a 64-bit hash. He
makes 232 minor variations in each (e.g
spaces/control chars), and finds a pair with the
same hash. Later claims second document was
signed, not first.



Collision Resistance and Birthday Attacks

» To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).

» Drawing random elements with replacement from a
set of k elements, a repeat is likely after about vk
selections.

» Mallory has two contracts, one for £1000, the other
£100,000, to be signed with a 64-bit hash. He
makes 232 minor variations in each (e.g
spaces/control chars), and finds a pair with the
same hash. Later claims second document was
signed, not first.

» An n-bit unkeyed hash function has ideal security
if producing a preimage or 2nd-preimage each
requires 2" operations, and producing a collision
requires 2"/? operations.
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From one-way functions to MDCs

» Multiplication of large primes is a OWF

» for appropriate choices of p and q, f(p,q) = pq is a
one-way function since integer factorization
[FACTORING] is difficult.

» Not feasible to turn into an MD function, though.
(Ex: why?)

» Exponentiation in finite fields is a OWF

» for appropriate primes p and numbers «,
f(x) = a* mod p is a one-way function, since the
discrete logarithm problem [DLP] is difficult.

» Main problem with turning this into a realistic MD
function is that it’s too slow to calculate.



OWFs from block ciphers

» A block cipher is an encryption scheme which works
on fixed length blocks of input text.

» We can construct a OWF from a block cipher such
as DES, which is treated essentially as a random
function:

h(x) = Ex(x) & x

for fixed key k. This can be turned into a MD
function, by iteration...



[terated hash function construction [HAC]

original input =
hash function h

preprocessing

Y
append padding bits

append length block

formatted
inputz = z1z2 -+ - Tt

iterated processing

compression
function f
Ti
H;1 I
/]
Hi | Ho=1V
Y
Hy

.

Y
output h(z) = g(Hy)
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Building up hash functions

» An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.

» The input x is split into blocks x1 x2, ... Xk of size t,
appending padding bits and a length block
indicating the original length.

Ho=IV  Hi=f(Hi—1,xi), 1<i<k  h(x)=g(Hg).

» |V: an initialization vector; g: an output

transformation (often identity).
» This is Merkle’s meta-method

» Fact: any CR compression function f can be
extended to a CRHF by the above construction, and

» padding: the last block with 0s, adding a final extra
block xx which holds right-justified binary
representation of length(x) (this padding is called
MD strengthening).

» Set IV =07, g =id, and compute H; = f(Hj-1, x;).
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MD5

» Improvement of MD4; MD4 and MD5 designed by
Ron Rivest.

» Text processed in 512-bit blocks, as 16 32-bit
sub-blocks. Output is four 32-bit blocks, giving a
128-bit hash. Message padded with 1 and then Os
until last block is 448 bits long, then a 64-bit length.

» Main loop has four rounds, chaining 4 variables
a, b, c,d. Each round uses a different operation (with
a similar structure) 16 times, which computes a new
value of one of the four variables using a non-linear
function of the other three, chosen to preserve
randomness properties of the input.

» For example, the first round uses the operation:

a (F(b,c,d)+xj+t) <<<s
F(b,c,d) (bAac)v(—-bad)
where <<< s is left-circular shift of s bits, x; is the
ith sub-block of the message. Constants t; are the
integer part of 232 x abs(sin(i + 1)) where 0 <i <63
is in radians (for the 4 * 16 steps).



SHA-1 (160)

» Secure Hash Algorithm (rev 1) is a NIST standard
[FIPS 180] also based on MD4. Five 32-bit blocks
are chained; output is 160 bits. Message blocks 512
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» Secure Hash Algorithm (rev 1) is a NIST standard
[FIPS 180] also based on MD4. Five 32-bit blocks
are chained; output is 160 bits. Message blocks 512
bits. Padding like MD5.

» Main loop has four rounds of 20 operations, chaining
5 variables a, b, ¢, d, e, f. Five IVs and four constants
are used:

A= 0x67452301
B = OxEFCDAB89
C = 0x98BADCFE
D = 0x10325476
E = OxC3D2E1F0O

Ko = 0x5A827999
K1 = OX6ED9EBA1
K2 = 0x8F1BBCDC
Kz = 0xCA62C1D6

» The message block undergoes an expansion
transformation from 16*32-bit words x; to 80*32-bit
words, w; by:

wi = X, for0<i<15.
wi = (Wi-3®Wwi-g®
Wi—14 @ Wi—16) <<<l1, forle<i<79.


http://www.itl.nist.gov/fipspubs/fip180-1.htm
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SHA-1 (160) continued

» 80 steps in main loop, changing Ks and Fs 4 times
» Where j=i/20:
for(i=0; i< 80; i++) {
tmp =(a <<<b5)+Fj(b,c,d)+e+w;+Kj;
e=d;
c=b<<<30;
b=a;
a=tmp,

}

» Each Fj combines three of the five variables:

Fo(X,Y,Z) = (XAY)V(mXAZ)
Fi(X,Y,Z2) = XeYeZ

Fo(X,Y,Z2) = (XAY)VXAZ)V(YAZ)
F3(X,Y,Z2) = XeYeZ

» Finally a, b, ¢, d, e are added to tmp (all addition is
modulo 232).

» Exercise: implement SHA-1 in your favourite
language following this. Test against shalsum.
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Current Status

» Hash functions are versatile and powerful primitive.

» However, difficult to construct and less researched
than encryption schemes.

» ideal hash function is a “random mapping” where
knowledge of previous results doesn’t give
knowledge of another.

» practical fast iterative hash constructions fail this!

» MD4 (1998), MD5 (1993/2005), SHA-1 (2005) are
now all considered broken.

» The US National Institute of Standards and
Technology (NIST) has since developed a set of
newer hash functions.

» Formerly called SHA-2, they are denoted by their
output size: SHA-256, SHA-384, SHA-512.

» However, since they are based upon the same SHA
construction, they are not long-term solutions

» NIST is currently running a SHA-3 competition to
determine the successor.
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