Cryptography Il:

Hash Functions
Computer Security Lecture 5

Mike Just!

School of Informatics
University of Edinburgh

25th January 2010

1Based on original lecture notes by David Aspinall

Outline

Varieties of hash function
Properties of hash functions
Building hash functions
Standard hash functions

Conclusion

Outline

Varieties of hash function

Hash function basics

» A hash function is a computationally efficient
function h: {0, 1}* — {0, 1}¥ which compresses
any arbitrary length binary string to a fixed size
k-length binary hash value (or hash for short).

Hash function basics

» A hash function is a computationally efficient
function h: {0, 1}* — {0, 1}¥ which compresses
any arbitrary length binary string to a fixed size
k-length binary hash value (or hash for short).

» A good hash function distributes values uniformly:
the probability that a randomly chosen string s gets
mapped to a particular hash y is 2—1k

Hash function basics

» A hash function is a computationally efficient
function h: {0, 1}* — {0, 1}¥ which compresses
any arbitrary length binary string to a fixed size
k-length binary hash value (or hash for short).

» A good hash function distributes values uniformly:
the probability that a randomly chosen string s gets
mapped to a particular hash y is 2—1k

» A cryptographic hash function must satisfy
some further properties, e.g.:
1. it should be difficult to invert;
2. it should be difficult to find a second input that
hashes to the same value as another input;
3. it should be difficult to find any two inputs that hash
to the same value.

depending on the application.

Hash function basics ...

» There are several applications of hash functios

» Integrity: Alice sends m, h(m) (or alternatively,
Ex(m|lh(m))) to Bob. (NB: Don't assume that
encryption, on its own, provides confidentiality).

» Confidentiality: An Authentication Server stores a
user’s password p as h(p).

» And others: confirmation of knowledge (e.qg.,
password), key derivation, pseudo-random number
generation, ...

» On their own, hash functions don’t protect against
» Malicious repetition of data, e.qg., repeating a £100
bank deposit
» Dishonestly repudiation, e.g., denying sending a
hashed email message using a hash function
» Nor do they support message recovery, i.e.,
recovering the original message after tampering

» Hash functions are intended to protect against
malicious modification

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is preimage resistant if given a hash value y, it is
computationally infeasible to find an x such that

h(x)=y.

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is preimage resistant if given a hash value y, it is
computationally infeasible to find an x such that

h(x)=y.

A

2nd Preimage Resistance (Weak Collision Resistance)

h is 2nd preimage resistant if given a value x; and
its hash h(xy), it is computationally infeasible to find
another x» such that h(xz) = h(x1).

\

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is preimage resistant if given a hash value y, it is
computationally infeasible to find an x such that

h(x)=y.

A

2nd Preimage Resistance (Weak Collision Resistance)

h is 2nd preimage resistant if given a value x; and
its hash h(xy), it is computationally infeasible to find
another x» such that h(xz) = h(x1).

| A\

(Strong) Collision Resistance

h is collision resistant if it is computationally
infeasible to find any two inputs x; and x, such that
h(x1) = h(x2).

\

Hash function Classification [HAC]

hash functions

unkeyed keyed
modification \ / message
3 other other A
detection o o authentication
(MDCs) applications applications (MACs)
OWHF CRHF

$preimage resistant ¢

~2nd 4
' preimage resistant

collision resistant ¢

Modification Detection Codes

» The main application of hash functions is as
Modification Detection Codes to provide data
integrity.

» A hash h(x) provides a short message digest, a
“fingerprint” of some possibly large data x. If the
data is altered, the digest should become invalid.

» This allows the data (but not the hash!) to be stored
in an unsecured place.
» If x is altered to x’, we hope h(x) # h(x’), so it can
be detected.
» This is useful especially where malicious alteration
is a concern, e.qg., software distribution.

» Ordinary hash functions such as CRC-checkers
produce checksums which are not 2nd preimage
resistant: an attacker could produce a hacked
version of a software product and ensure the
checksum remained the same.

Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

» A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

» A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

» In practice, CRHF usually satisfies preimage
resistance.

Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

» A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

» In practice, CRHF usually satisfies preimage
resistance.

» CRHFs are harder to construct than OWHFs and
have longer length hash values.

Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

» A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

» In practice, CRHF usually satisfies preimage
resistance.

» CRHFs are harder to construct than OWHFs and
have longer length hash values.

» Choice between OWHF and CRHF depends on
application:

Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

» A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

» In practice, CRHF usually satisfies preimage
resistance.

» CRHFs are harder to construct than OWHFs and
have longer length hash values.

» Choice between OWHF and CRHF depends on
application:
» If attacker can control input, CRHF required.

Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

» A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

» In practice, CRHF usually satisfies preimage
resistance.

» CRHFs are harder to construct than OWHFs and
have longer length hash values.
» Choice between OWHF and CRHF depends on
application:
» If attacker can control input, CRHF required.
» Otherwise OWHF suffices

Varieties of MDCs

» A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

» A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

» In practice, CRHF usually satisfies preimage
resistance.

» CRHFs are harder to construct than OWHFs and
have longer length hash values.

» Choice between OWHF and CRHF depends on
application:
» If attacker can control input, CRHF required.
» Otherwise OWHF suffices

» Ex: which is needed for password file security?

Message Authentication Codes

» Message Authentication Codes are keyed hash
functions, indexed with a secret key.

> As well as data integrity, they provide data-origin
authentication, because it is assumed that apart
from the recipient, only the sender knows the secret
key necessary to compute the MAC.

» A MAC is a key-indexed family of hash functions,

{hk | k € K}. MACs must satisfy a computation
resistance property.

Computation Resistance

Given a set of pairs (x;, hg(x;)) it is computationally
infeasible to find any other text-MAC pair (x, kg(x)) for a
new input x # Xx;.

Outline

Properties of hash functions

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
» Sketch proof [HACI:

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
» Sketch proof [HACI:
» Let h be CR, but suppose it is not 2nd PI.

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
» Sketch proof [HACI:

» Let h be CR, but suppose it is not 2nd PI.
» Fix some input x; compute h(x).

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
» Sketch proof [HACI:
» Let h be CR, but suppose it is not 2nd PI.
» Fix some input x; compute h(x).
» Since not 2nd PI, we can find an x’ # x with
h(x") = h(x).

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
» Sketch proof [HAC]:
» Let h be CR, but suppose it is not 2nd PI.
» Fix some input x; compute h(x).
» Since not 2nd PI, we can find an x’ # x with
h(x’) = h(x).
» But now (x, x’) is a collision, so h cannot be CR.

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
» Sketch proof [HACI:
» Let h be CR, but suppose it is not 2nd PI.
» Fix some input x; compute h(x).
» Since not 2nd PI, we can find an x’ # x with
h(x’) = h(x).
» But now (x, x’) is a collision, so h cannot be CR.
» This and similar arguments (e.g., see Smart) can be
made precise using the Random Oracle Model.

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
» Sketch proof [HACI:
» Let h be CR, but suppose it is not 2nd PI.
» Fix some input x; compute h(x).
» Since not 2nd PI, we can find an x’ # x with
h(x’) = h(x).
» But now (x, x’) is a collision, so h cannot be CR.
» This and similar arguments (e.g., see Smart) can be
made precise using the Random Oracle Model.

» Collision resistance does not imply preimage
resistance

Relationships between properties

» Collision resistance implies 2nd-preimage
resistance.
Sketch proof [HAC]:

» Let h be CR, but suppose it is not 2nd PI.

» Fix some input x; compute h(x).

» Since not 2nd PI, we can find an x’ # x with

h(x’) = h(x).

» But now (x, x’) is a collision, so h cannot be CR.
This and similar arguments (e.g., see Smart) can be
made precise using the Random Oracle Model.

Collision resistance does not imply preimage
resistance

Contrived counterexample:

v

v

v

v

[1]]x if x has length n
h(x) = { 0 || g(x) otherwise

Collision Resistance and Birthday Attacks

» To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).

Collision Resistance and Birthday Attacks

» To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).

» Drawing random elements with replacement from a
set of k elements, a repeat is likely after about vk
selections.

Collision Resistance and Birthday Attacks

» To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).

» Drawing random elements with replacement from a
set of k elements, a repeat is likely after about vk
selections.

» Mallory has two contracts, one for £1000, the other
£100,000, to be signed with a 64-bit hash. He
makes 232 minor variations in each (e.g
spaces/control chars), and finds a pair with the
same hash. Later claims second document was
signed, not first.

Collision Resistance and Birthday Attacks

» To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).

» Drawing random elements with replacement from a
set of k elements, a repeat is likely after about vk
selections.

» Mallory has two contracts, one for £1000, the other
£100,000, to be signed with a 64-bit hash. He
makes 232 minor variations in each (e.g
spaces/control chars), and finds a pair with the
same hash. Later claims second document was
signed, not first.

» An n-bit unkeyed hash function has ideal security
if producing a preimage or 2nd-preimage each
requires 2" operations, and producing a collision
requires 2"/? operations.

Outline

Building hash functions

From one-way functions to MDCs

» Multiplication of large primes is a OWF

From one-way functions to MDCs

» Multiplication of large primes is a OWF

» for appropriate choices of p and q, f(p,q) = pq is a
one-way function since integer factorization
[FACTORING] is difficult.

From one-way functions to MDCs

» Multiplication of large primes is a OWF

» for appropriate choices of p and q, f(p,q) = pq is a
one-way function since integer factorization
[FACTORING] is difficult.

» Not feasible to turn into an MD function, though.
(Ex: why?)

From one-way functions to MDCs

» Multiplication of large primes is a OWF

» for appropriate choices of p and q, f(p,q) = pq is a
one-way function since integer factorization
[FACTORING] is difficult.

» Not feasible to turn into an MD function, though.
(Ex: why?)

» Exponentiation in finite fields is a OWF

From one-way functions to MDCs

» Multiplication of large primes is a OWF
» for appropriate choices of p and q, f(p,q) = pq is a
one-way function since integer factorization
[FACTORING] is difficult.
» Not feasible to turn into an MD function, though.
(Ex: why?)
» Exponentiation in finite fields is a OWF

» for appropriate primes p and numbers «,
f(x) = a* mod p is a one-way function, since the
discrete logarithm problem [DLP] is difficult.

From one-way functions to MDCs

» Multiplication of large primes is a OWF

» for appropriate choices of p and q, f(p,q) = pq is a
one-way function since integer factorization
[FACTORING] is difficult.

» Not feasible to turn into an MD function, though.
(Ex: why?)

» Exponentiation in finite fields is a OWF

» for appropriate primes p and numbers «,
f(x) = a* mod p is a one-way function, since the
discrete logarithm problem [DLP] is difficult.

» Main problem with turning this into a realistic MD
function is that it’s too slow to calculate.

OWFs from block ciphers

» A block cipher is an encryption scheme which works
on fixed length blocks of input text.

» We can construct a OWF from a block cipher such
as DES, which is treated essentially as a random
function:

h(x) = Ex(x) & x

for fixed key k. This can be turned into a MD
function, by iteration...

[terated hash function construction [HAC]

original input =
hash function h

preprocessing

Y
append padding bits

append length block

formatted
inputz = z1z2 -+ - Tt

iterated processing

compression
function f
Ti
H;1 I
/]
Hi | Ho=1V
Y
Hy

.

Y
output h(z) = g(Hy)

Building up hash functions

» An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.

Building up hash functions

» An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.

» The input x is split into blocks x1 x2, ... xx of size t,
appending padding bits and a length block
indicating the original length.

Ho=IV Hi=f(Hi—1,xi), 1<i<k h(x)=g(Hg).

Building up hash functions

» An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.

» The input x is split into blocks x1 x2, ... xx of size t,
appending padding bits and a length block
indicating the original length.

Ho=IV Hi=f(Hi—1,xi), 1<i<k h(x)=g(Hg).

> |V: an initialization vector; g: an output
transformation (often identity).

Building up hash functions

» An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.

» The input x is split into blocks x1 x2, ... xx of size t,
appending padding bits and a length block
indicating the original length.

Ho=IV Hi=f(Hi—1,xi), 1<i<k h(x)=g(Hg).

> |V: an initialization vector; g: an output
transformation (often identity).

» This is Merkle’s meta-method

Building up hash functions

» An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.

» The input x is split into blocks x1 x2, ... xx of size t,
appending padding bits and a length block
indicating the original length.

Ho=IV Hi=f(Hi-1,Xxi), 1<i<k h(x)=g(Hk).

> |V: an initialization vector; g: an output
transformation (often identity).
» This is Merkle’s meta-method
» Fact: any CR compression function f can be
extended to a CRHF by the above construction, and

Building up hash functions

» An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.

» The input x is split into blocks x1 x2, ... Xk of size t,
appending padding bits and a length block
indicating the original length.

Ho=IV Hi=f(Hi—1,xi), 1<i<k h(x)=g(Hg).

» |V: an initialization vector; g: an output

transformation (often identity).
» This is Merkle’s meta-method

» Fact: any CR compression function f can be
extended to a CRHF by the above construction, and

» padding: the last block with 0s, adding a final extra
block xx which holds right-justified binary
representation of length(x) (this padding is called
MD strengthening).

Building up hash functions

» An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.

» The input x is split into blocks x1 x2, ... Xk of size t,
appending padding bits and a length block
indicating the original length.

Ho=IV Hi=f(Hi—1,xi), 1<i<k h(x)=g(Hg).

» |V: an initialization vector; g: an output

transformation (often identity).
» This is Merkle’s meta-method

» Fact: any CR compression function f can be
extended to a CRHF by the above construction, and

» padding: the last block with 0s, adding a final extra
block xx which holds right-justified binary
representation of length(x) (this padding is called
MD strengthening).

» Set IV =07, g =id, and compute H; = f(Hj-1, x;).

Outline

Standard hash functions

MD5

» Improvement of MD4; MD4 and MD5 designed by
Ron Rivest.

» Text processed in 512-bit blocks, as 16 32-bit
sub-blocks. Output is four 32-bit blocks, giving a
128-bit hash. Message padded with 1 and then Os
until last block is 448 bits long, then a 64-bit length.

MD5

» Improvement of MD4; MD4 and MD5 designed by
Ron Rivest.

» Text processed in 512-bit blocks, as 16 32-bit
sub-blocks. Output is four 32-bit blocks, giving a
128-bit hash. Message padded with 1 and then Os
until last block is 448 bits long, then a 64-bit length.

» Main loop has four rounds, chaining 4 variables
a, b, c,d. Each round uses a different operation (with
a similar structure) 16 times, which computes a new
value of one of the four variables using a non-linear
function of the other three, chosen to preserve
randomness properties of the input.

MD5

» Improvement of MD4; MD4 and MD5 designed by
Ron Rivest.

» Text processed in 512-bit blocks, as 16 32-bit
sub-blocks. Output is four 32-bit blocks, giving a
128-bit hash. Message padded with 1 and then Os
until last block is 448 bits long, then a 64-bit length.

» Main loop has four rounds, chaining 4 variables
a, b, c,d. Each round uses a different operation (with
a similar structure) 16 times, which computes a new
value of one of the four variables using a non-linear
function of the other three, chosen to preserve
randomness properties of the input.

» For example, the first round uses the operation:

a (F(b,c,d)+xj+t) <<<s
F(b,c,d) (bAac)v(—-bad)
where <<< s is left-circular shift of s bits, x; is the
ith sub-block of the message. Constants t; are the
integer part of 232 x abs(sin(i + 1)) where 0 <i <63
is in radians (for the 4 * 16 steps).

SHA-1 (160)

» Secure Hash Algorithm (rev 1) is a NIST standard
[FIPS 180] also based on MD4. Five 32-bit blocks
are chained; output is 160 bits. Message blocks 512
bits. Padding like MD5.

http://www.itl.nist.gov/fipspubs/fip180-1.htm

SHA-1 (160)

» Secure Hash Algorithm (rev 1) is a NIST standard
[FIPS 180] also based on MD4. Five 32-bit blocks
are chained; output is 160 bits. Message blocks 512
bits. Padding like MD5.

» Main loop has four rounds of 20 operations, chaining
5 variables a, b, ¢, d, e, f. Five IVs and four constants
are used:

A= 0x67452301
B = OxEFCDAB89
C = 0x98BADCFE
D = 0x10325476
E = OxC3D2E1F0O

Ko = 0x5A827999
K1 = OX6ED9EBA1
K2 = 0x8F1BBCDC
Kz = 0xCA62C1D6

http://www.itl.nist.gov/fipspubs/fip180-1.htm

SHA-1 (160)

» Secure Hash Algorithm (rev 1) is a NIST standard
[FIPS 180] also based on MD4. Five 32-bit blocks
are chained; output is 160 bits. Message blocks 512
bits. Padding like MD5.

» Main loop has four rounds of 20 operations, chaining
5 variables a, b, ¢, d, e, f. Five IVs and four constants
are used:

A= 0x67452301
B = OxEFCDAB89
C = 0x98BADCFE
D = 0x10325476
E = OxC3D2E1F0O

Ko = 0x5A827999
K1 = OX6ED9EBA1
K2 = 0x8F1BBCDC
Kz = 0xCA62C1D6

» The message block undergoes an expansion
transformation from 16*32-bit words x; to 80*32-bit
words, w; by:

wi = X, for0<i<15.
wi = (Wi-3®Wwi-g®
Wi—14 @ Wi—16) <<<l1, forle<i<79.

http://www.itl.nist.gov/fipspubs/fip180-1.htm

SHA-1 (160) continued

» 80 steps in main loop, changing Ks and Fs 4 times

SHA-1 (160) continued

» 80 steps in main loop, changing Ks and Fs 4 times
» Where j =i/20:

for(i=0; i< 80; i++) {
tmp =(a <<<b5)+Fj(b,c,d)+e+w;+Kj;
e=d,;
c=b<<< 30;
b=a;
a=tmp,

SHA-1 (160) continued

» 80 steps in main loop, changing Ks and Fs 4 times
» Where j=i/20:
for(i=0; i< 80; i++) {
tmp =(a <<<b5)+Fj(b,c,d)+e+w;+Kj;
e=d;
c=b<<<30;
b=a;
a=tmp,

}

» Each Fj combines three of the five variables:

Fo(X,Y,Z) = (XAY)V(mXAZ)
Fi(X,Y,Z2) = XeYeZ

Fo(X,Y,Z2) = (XAY)VXAZ)V(YAZ)
F3(X,Y,Z2) = XeYeZ

SHA-1 (160) continued

» 80 steps in main loop, changing Ks and Fs 4 times
» Where j=i/20:
for(i=0; i< 80; i++) {
tmp =(a <<<b5)+Fj(b,c,d)+e+w;+Kj;
e=d;
c=b<<<30;
b=a;
a=tmp,

}

» Each Fj combines three of the five variables:

Fo(X,Y,Z) = (XAY)V(mXAZ)
Fi(X,Y,Z2) = XeYeZ

Fo(X,Y,Z2) = (XAY)VXAZ)V(YAZ)
F3(X,Y,Z2) = XeYeZ

» Finally a, b, ¢, d, e are added to tmp (all addition is
modulo 232).

SHA-1 (160) continued

» 80 steps in main loop, changing Ks and Fs 4 times
» Where j=i/20:
for(i=0; i< 80; i++) {
tmp =(a <<<b5)+Fj(b,c,d)+e+w;+Kj;
e=d;
c=b<<<30;
b=a;
a=tmp,

}

» Each Fj combines three of the five variables:

Fo(X,Y,Z) = (XAY)V(mXAZ)
Fi(X,Y,Z2) = XeYeZ

Fo(X,Y,Z2) = (XAY)VXAZ)V(YAZ)
F3(X,Y,Z2) = XeYeZ

» Finally a, b, ¢, d, e are added to tmp (all addition is
modulo 232).

» Exercise: implement SHA-1 in your favourite
language following this. Test against shalsum.

Outline

Conclusion

Current Status

» Hash functions are versatile and powerful primitive.

» However, difficult to construct and less researched
than encryption schemes.

» ideal hash function is a “random mapping” where
knowledge of previous results doesn’t give
knowledge of another.

» practical fast iterative hash constructions fail this!

» MD4 (1998), MD5 (1993/2005), SHA-1 (2005) are
now all considered broken.

» The US National Institute of Standards and
Technology (NIST) has since developed a set of
newer hash functions.

» Formerly called SHA-2, they are denoted by their
output size: SHA-256, SHA-384, SHA-512.

» However, since they are based upon the same SHA
construction, they are not long-term solutions

» NIST is currently running a SHA-3 competition to
determine the successor.

References

¥ A. . Menezes, P. C. Van Oorschot, S. A. Vanstone, eds.
Handbook of Applied Cryptography.

CRC Press, 1997. Online:
http://www.cacr.math.uwaterloo.ca/hac.

¥ Neils Ferguson and Bruce Schneier. Practical
Cryptography.
John Wiley & Sons, 2003.

¥ Douglas R Stinson. Cryptography Theory and Practice.
CRC Press, second edition edition, 2002.

¥ Nigel Smart. Cryptography: An Introduction.

McGraw-Hill, 2003. Third edition online:
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

One of: Ch 9 of HAC (9.1-9.2); Ch. 10 of Smart 3rd Ed;
11.1-11.3 of Gollmann.

http://www.cacr.math.uwaterloo.ca/hac
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

	Outline
	Varieties of hash function
	Properties of hash functions
	Building hash functions
	Standard hash functions
	Conclusion

