
Cryptography II:
Hash Functions

Computer Security Lecture 5

Mike Just1

School of Informatics
University of Edinburgh

25th January 2010

1Based on original lecture notes by David Aspinall

Hash function basics

É A hash function is a computationally efficient
function h : {0,1}∗ → {0,1}k which compresses
any arbitrary length binary string to a fixed size
k-length binary hash value (or hash for short).

É A good hash function distributes values uniformly:
the probability that a randomly chosen string s gets
mapped to a particular hash y is 1

2k

É A cryptographic hash function must satisfy
some further properties, e.g.:
1. it should be difficult to invert;
2. it should be difficult to find a second input that

hashes to the same value as another input;
3. it should be difficult to find any two inputs that hash

to the same value.

depending on the application.

Hash function basics . . .
É There are several applications of hash functios

É Integrity: Alice sends m,h(m) (or alternatively,
Ek(m||h(m))) to Bob. (NB: Don’t assume that
encryption, on its own, provides confidentiality).

É Confidentiality: An Authentication Server stores a
user’s password p as h(p).

É And others: confirmation of knowledge (e.g.,
password), key derivation, pseudo-random number
generation, . . .

É On their own, hash functions don’t protect against
É Malicious repetition of data, e.g., repeating a £100
bank deposit

É Dishonestly repudiation, e.g., denying sending a
hashed email message using a hash function

É Nor do they support message recovery, i.e.,
recovering the original message after tampering

É Hash functions are intended to protect against
malicious modification

Properties of cryptographic hash functions

Preimage Resistance (One-way)

h is preimage resistant if given a hash value y, it is
computationally infeasible to find an x such that
h(x) = y.

2nd Preimage Resistance (Weak Collision Resistance)

h is 2nd preimage resistant if given a value x1 and
its hash h(x1), it is computationally infeasible to find
another x2 such that h(x2) = h(x1).

(Strong) Collision Resistance

h is collision resistant if it is computationally
infeasible to find any two inputs x1 and x2 such that
h(x1) = h(x2).

Hash function Classification [HAC] Modification Detection Codes

É The main application of hash functions is as
Modification Detection Codes to provide data
integrity.

É A hash h(x) provides a short message digest, a
“fingerprint” of some possibly large data x. If the
data is altered, the digest should become invalid.
É This allows the data (but not the hash!) to be stored
in an unsecured place.

É If x is altered to x′, we hope h(x) 6= h(x′), so it can
be detected.

É This is useful especially where malicious alteration
is a concern, e.g., software distribution.

É Ordinary hash functions such as CRC-checkers
produce checksums which are not 2nd preimage
resistant: an attacker could produce a hacked
version of a software product and ensure the
checksum remained the same.

Varieties of MDCs

É A one-way hash function (OWHF) is a hash
function that satisfies preimage resistance and
2nd-preimage resistance.

É A collision resistant hash function (CRHF) is a
hash function that satisfies 2nd-preimage
resistance and collision resistance.

É In practice, CRHF usually satisfies preimage
resistance.

É CRHFs are harder to construct than OWHFs and
have longer length hash values.

É Choice between OWHF and CRHF depends on
application:
É If attacker can control input, CRHF required.
É Otherwise OWHF suffices

É Ex: which is needed for password file security?

Message Authentication Codes

É Message Authentication Codes are keyed hash
functions, indexed with a secret key.
É As well as data integrity, they provide data-origin
authentication, because it is assumed that apart
from the recipient, only the sender knows the secret
key necessary to compute the MAC.

É A MAC is a key-indexed family of hash functions,
{hk | k ∈ K}. MACs must satisfy a computation
resistance property.

Computation Resistance

Given a set of pairs (xi, hk(xi)) it is computationally
infeasible to find any other text-MAC pair (x, kk(x)) for a
new input x 6= xi.

Relationships between properties

É Collision resistance implies 2nd-preimage
resistance.

É Sketch proof [HAC]:
É Let h be CR, but suppose it is not 2nd PI.
É Fix some input x; compute h(x).
É Since not 2nd PI, we can find an x′ 6= x with
h(x′) = h(x).

É But now (x, x′) is a collision, so h cannot be CR.
É This and similar arguments (e.g., see Smart) can be
made precise using the Random Oracle Model.

É Collision resistance does not imply preimage
resistance

É Contrived counterexample:

h(x) =
�

1 || x if x has length n
0 || g(x) otherwise

Collision Resistance and Birthday Attacks

É To satisfy (strong) collision resistance, a hash
function must be large enough to withstand a
birthday attack. (or square root attack).

É Drawing random elements with replacement from a
set of k elements, a repeat is likely after about

p
k

selections.
É Mallory has two contracts, one for £1000, the other
£100,000, to be signed with a 64-bit hash. He
makes 232 minor variations in each (e.g
spaces/control chars), and finds a pair with the
same hash. Later claims second document was
signed, not first.

É An n-bit unkeyed hash function has ideal security
if producing a preimage or 2nd-preimage each
requires 2n operations, and producing a collision
requires 2n/2 operations.

From one-way functions to MDCs

É Multiplication of large primes is a OWF
É for appropriate choices of p and q, f (p,q) = pq is a
one-way function since integer factorization
[FACTORING] is difficult.

É Not feasible to turn into an MD function, though.
(Ex: why?)

É Exponentiation in finite fields is a OWF
É for appropriate primes p and numbers α,
f (x) = αx mod p is a one-way function, since the
discrete logarithm problem [DLP] is difficult.

É Main problem with turning this into a realistic MD
function is that it’s too slow to calculate.

OWFs from block ciphers

É A block cipher is an encryption scheme which works
on fixed length blocks of input text.

É We can construct a OWF from a block cipher such
as DES, which is treated essentially as a random
function:

h(x) = Ek(x)⊕ x

for fixed key k. This can be turned into a MD
function, by iteration. . .

Iterated hash function construction [HAC] Building up hash functions
É An iterated hash function is constructed using a
compression function f which converts a t + n-bit
input into an n-bit output.
É The input x is split into blocks x1 x2, . . . xk of size t,
appending padding bits and a length block
indicating the original length.

H0 = IV Hi = f (Hi−1, xi), 1 ≤ i ≤ k h(x) = g(Hk).

É IV: an initialization vector; g: an output
transformation (often identity).

É This is Merkle’s meta-method
É Fact: any CR compression function f can be
extended to a CRHF by the above construction, and

É padding: the last block with 0s, adding a final extra
block xk which holds right-justified binary
representation of length(x) (this padding is called
MD strengthening).

É Set IV = 0n, g = id, and compute Hi = f (Hi−1, xi).

MD5
É Improvement of MD4; MD4 and MD5 designed by
Ron Rivest.
É Text processed in 512-bit blocks, as 16 32-bit
sub-blocks. Output is four 32-bit blocks, giving a
128-bit hash. Message padded with 1 and then 0s
until last block is 448 bits long, then a 64-bit length.

É Main loop has four rounds, chaining 4 variables
a,b, c, d. Each round uses a different operation (with
a similar structure) 16 times, which computes a new
value of one of the four variables using a non-linear
function of the other three, chosen to preserve
randomness properties of the input.

É For example, the first round uses the operation:

a = (F(b, c, d) + xi + tj) <<< s
F(b, c, d) = (b∧ c)∨ (¬b∧ d)

where <<< s is left-circular shift of s bits, xi is the
ith sub-block of the message. Constants tj are the
integer part of 232 ∗abs(sin(i+ 1)) where 0 ≤ i ≤ 63
is in radians (for the 4 * 16 steps).

SHA-1 (160)
É Secure Hash Algorithm (rev 1) is a NIST standard
[FIPS 180] also based on MD4. Five 32-bit blocks
are chained; output is 160 bits. Message blocks 512
bits. Padding like MD5.
É Main loop has four rounds of 20 operations, chaining
5 variables a,b, c, d, e, f . Five IVs and four constants
are used:

A = 0x67452301
B = 0xEFCDAB89
C = 0x98BADCFE
D = 0x10325476
E = 0xC3D2E1F0

K0 = 0x5A827999
K1 = 0x6ED9EBA1
K2 = 0x8F1BBCDC
K3 = 0xCA62C1D6

É The message block undergoes an expansion
transformation from 16*32-bit words xi to 80*32-bit
words, wi by:
wi = xi, for 0 ≤ i ≤ 15.
wi = (wi−3 ⊕wi−8⊕

wi−14 ⊕wi−16) <<< 1, for 16 ≤ i ≤ 79.

SHA-1 (160) continued
É 80 steps in main loop, changing Ks and Fs 4 times

É Where j = i/20:

for(i = 0; i < 80; i++) {
tmp = (a <<< 5) + Fj(b, c, d) + e+wi + Kj;
e = d;
c = b <<< 30;
b = a;
a = tmp;

}

É Each Fj combines three of the five variables:

F0(X,Y,Z) = (X∧ Y)∨ (¬X∧ Z)
F1(X,Y,Z) = X⊕ Y ⊕ Z
F2(X,Y,Z) = (X∧ Y)∨ (X∧ Z)∨ (Y ∧ Z)
F3(X,Y,Z) = X⊕ Y ⊕ Z

É Finally a,b, c, d, e are added to tmp (all addition is
modulo 232).

É Exercise: implement SHA-1 in your favourite
language following this. Test against sha1sum.

Current Status

É Hash functions are versatile and powerful primitive.
É However, difficult to construct and less researched
than encryption schemes.
É ideal hash function is a “random mapping” where
knowledge of previous results doesn’t give
knowledge of another.

É practical fast iterative hash constructions fail this!
É MD4 (1998), MD5 (1993/2005), SHA-1 (2005) are
now all considered broken.

É The US National Institute of Standards and
Technology (NIST) has since developed a set of
newer hash functions.
É Formerly called SHA-2, they are denoted by their
output size: SHA-256, SHA-384, SHA-512.

É However, since they are based upon the same SHA
construction, they are not long-term solutions

É NIST is currently running a SHA-3 competition to
determine the successor.

References
A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, eds.
Handbook of Applied Cryptography.
CRC Press, 1997. Online:
http://www.cacr.math.uwaterloo.ca/hac.

Neils Ferguson and Bruce Schneier. Practical
Cryptography.
John Wiley & Sons, 2003.

Douglas R Stinson. Cryptography Theory and Practice.
CRC Press, second edition edition, 2002.

Nigel Smart. Cryptography: An Introduction.
McGraw-Hill, 2003. Third edition online:
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

One of: Ch 9 of HAC (9.1–9.2); Ch. 10 of Smart 3rd Ed;
11.1–11.3 of Gollmann.

