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Cryptography has a long history. Its original and main

application is to enable two parties to communicate in

secret, across a unsecured (public) channel.

◮ cryptography: science of secret writing with

ciphers

◮ cryptanalysis: science of breaking ciphers

◮ cryptology: both of above

◮ encryption: transforming plain text to cipher text

◮ decryption: recovering plain text from cipher text

◮ encryption scheme, cipher, cryptosystem: a

mechanism for encryption and decryption
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Goals of cryptography

Cryptography can be directly used to help ensure these

security properties:

◮ confidentiality — preventing open access

◮ integrity — preventing unauthorized modification

◮ authentication — verification of identity
Sometimes split into:
◮ entity authentication
◮ data origin authentication

◮ non-repudiation — preventing denial of actions

We want to ensure these properties, even when

another party may eavesdrop or intercept messages.

Carefully designed cryptographic protocols help this.



Cryptographic primitives

Protocols are built using cryptographic primitives,

parametrised on 0, 1, or 2 keys.

Unkeyed Secret key Public key

Random sequences

One-way

permutations

Hash functions

Symmetric-key ciphers

— block and stream

Keyed hash functions

(aka MACs)

Identification primitives

Digital signatures

Pseudorandom

sequences

Public-key ciphers

Digital signatures

Identification

primitives

Familiar examples:

◮ Hash functions: MD5, SHA-1, SHA-256

◮ Symmetric block ciphers: DES, 3DES, AES

◮ Public key ciphers: RSA, El Gammal

◮ Digital signature schemes: RSA, DSA
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Notation and example applications

◮ Hash functions h(m)

◮ integrity: “fingerprint” provides tamper evidence
◮ message compression: hash-then-sign schemes

◮ Symmetric block ciphers Ek(m), D−1k (m)

◮ bulk encryption: network comms, data storage

◮ Public key (asymmetric) ciphers Ee(m), Dd(m)

◮ key exchange: establishing shared keys for
symmetric ciphers

◮ Digital signature schemes SA(m), VA(m,s)

◮ key signing: public key infrastructures (PKIs)



Choosing primitives

◮ Choice of primitives influenced by:
◮ functionality needed
◮ performance
◮ implementation ease
◮ degree of security

◮ Degree of security is tricky: may consider
◮ primitives are “perfect”, maybe “unbreakable”

◮ what is the worst that can happen?

◮ primitives are “imperfect”
◮ what does attacker know?
◮ how much effort can attacker spend?
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Degree of security: two views

◮ Assume perfect cryptography primitives
◮ Primitives are operators in an abstract data type.
◮ Operators are perfect (cannot break encryption).
◮ Other assumptions, e.g., key text differentiable from
cipher text.

◮ Used for formal analysis of security protocol
correctness. Correctness statements are relative to
assumptions about primitives.

◮ Model real cryptography primitives
◮ Attacker knowledge may allow cryptanalysis
◮ Consider specific algorithms (MD5, DES, etc.).
◮ Analyse design of cryptosystem (security,
“strength”) and algorithms (security, efficiency).

◮ Study cryptographic notions of security
(information-theoretic, complexity-theoretic,
probabilistic, . . . ).



Cryptanalysis attacks

◮ Setup: have c1 = Ek(m1),. . . , cn = Ek(mn) for small

n.

◮ Best outcome: find k or algorithm for D−1k .

◮ Try to better brute-force (exhaustive search).

Attack type Attacker knowledge

Ciphertext only the ci (deduce at least mi)

Known plaintext the ci and mi

Chosen plaintext ci for chosen mi

Adaptive chosen plaintext as above, but iterative

Chosen ciphertext ci,mi = Dd(ci). Find decryption key d.

“Rubber-hose” bribery, torture, or blackmail

“Purchase-key” (not cryptanalysis, but v successful)
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Security of primitives: two issues

◮ Openness vs security-by-obscurity
◮ Kerckhoffs’ desiderata (1883) recommends that for
keyed ciphers, security should lie wholly in the key.
“Compromise of the system details should not
inconvenience the correspondents”

◮ Nowadays, cryptosystems usually have an open
design, reviewed by as many experts as possible.
Often security-by-obscurity fails.

◮ Key size in encryption systems
◮ Necessary but not sufficient to have a key space
large enough to prevent feasible brute force attack.

◮ Rule-of-thumb: a key space of 280 is currently
considered large enough. But this is a very
simplistic view!
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Bijections

◮ Recall that a bijection is a mathematical function

which is one-to-one (injective) and onto (surjective).

◮ In particular, if f : X→ Y is a bijection, then for all

y ∈ Y, there is a unique x ∈ X such that f (x) = y.

This unique x is given by the inverse function

f−1 : Y → X.

Bijections are used as the basis of cryptography, for

encryption. If f is an encryption transformation, then

f−1 is the corresponding decryption transformation.

Why restrict to bijections? If a non-injective function

were used as as an encryption transformation, it would

not be possible to decrypt to a unique plain text.

(Saying this, non-bijections, in fact non-functions, are

used as encryption transformations. Can you imagine

how?)
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Message spaces

We assume:

◮ A set M, the message space.

M holds symbol strings, e.g., binary, English.

Elements m ∈M are called plaintexts.

◮ A set C, the ciphertext space.

C also consists of strings of symbols.

Elements c ∈ C are called ciphertexts.

◮ Each space is given over some alphabet, a set A.

For example, we may consider A to be the letters of

the English alphabet A-Z, or the set of binary digits

{0,1}. (Of course, any alphabet can be encoded

using words over {0,1}).
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Cryptography systems

◮ An encryption transformation is a bijection

E :M→C.

◮ A decryption transformation is a bijection

D : C →M.

Encryption and decryption transformations are indexed

using keys.

◮ The key space K is a finite set of keys k ∈ K.

◮ An encryption scheme consists of two sets
indexed by keys
◮ a family of encryption functions {Ee | e ∈ K}
◮ a family of decryption functions {Dd | d ∈ K}

such that for each e ∈ K, there is a unique d ∈ K

with Dd = E−1
e
. We call such a pair (e,d) a key pair.

◮ An encryption scheme is also known as a

cryptography system or a cipher.



Encryption

Encryption key
e ∈ K

plaintext
m ∈M

Encryption function
c = Ee(m)

ciphertext
c ∈ C



Decryption

Decryption key
d ∈ K

ciphertext
c ∈ C

Decryption function
m = Dd(c)

plaintext
m ∈M
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Symmetric and asymmetric cryptography

◮ symmetric cryptography
◮ e and d are (essentially) the same
◮ aka secret-key, shared-key, single-key, conventional

◮ asymmetric cryptography
◮ Given e, it is (computationally) infeasible to find d.
◮ aka public-key (PK), since e can be made public.

◮ Of course, the key-pair relation is not the only

difference between symmetric and asymmetric

cryptography. Other differences arise from

characteristics of known algorithms and usage

modes.

◮ Note: these definitions are imprecise: to be exact,

one should define the meanings of “essentially”

and “computationally infeasible”.



Symmetric cryptography
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Asymmetry: a ground breaking discovery!

◮ Our framework builds in the ideas of public key

cryptography, but we shouldn’t forget how truly

ground breaking its discovery was.

◮ Secure channels are difficult and costly to

implement. How to deliver secret keys through

unsecured channels had confounded thinkers for

many centuries.

If you can read everything I write, I cannot rely

on any secret that has gone before, how can I

possibly send a confidential message to my

friend which you cannot also understand?

◮ The answer uses a creative leap of innovation (two

keys, one public), as well relying on some clever

maths in its implementation (trapdoor one-way

functions).
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◮ it is feasible to compute f (x) for all x ∈ X, but

◮ it is infeasible to find any x in the pre-image of f ,

such that f (x) = y, for a randomly chosen y ∈ Im f .

(If f is bijective, this means it is infeasible to

compute f−1(y)).
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One-way functions

A function f : X→ Y is called a one-way function if

◮ it is feasible to compute f (x) for all x ∈ X, but

◮ it is infeasible to find any x in the pre-image of f ,

such that f (x) = y, for a randomly chosen y ∈ Im f .

(If f is bijective, this means it is infeasible to

compute f−1(y)).

By definition, a one-way function is not useful for

encryption. But it may be useful as a cryptographic or

one-way hash function.

The definition above is vague: to be exact, we should

give precise notions of feasible and infeasible. This is

possible, but so far no-one has proved the

existence of a true one-way function. Some

functions used in modern ciphers are properly called

candidate one-way functions, which means that there is

a body of belief that they are one-way.
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Trapdoor one-way functions

◮ A trapdoor one-way function is a one-way

function f that has a “trapdoor”: given some

additional information, it is feasible to compute an

x such that f (x) = y, for any y ∈ Im f .

These are just what we need for public key crypto: the

private key is the trapdoor information.

Again, we know candidates, but no function has yet
been proved to be a trapdoor one-way function.

◮ In principle, there is a possibility of breaking crypto
systems by new algorithms based on advances in
mathematics and cryptanalysis.

◮ It’s unlikely that one-way functions do not exist; some
hash functions are as secure as NP-complete problems.

◮ Catastrophic failure for present functions is less common
than gradual failure due to advances in computation
power and (non-revolutionary but clever) algorithms or
cryptanalysis, bringing some attacks closer to feasibility.



Asymmetric cryptography
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