Cryptography I: Introduction

Computer Security Lecture 3

Mike Just¹

School of Informatics University of Edinburgh

18th January 2009

Terminology

Cryptography has a long history. Its original and main application is to enable two parties to communicate in secret, across a unsecured (public) channel.

- cryptography: science of secret writing with ciphers
- cryptanalysis: science of breaking ciphers
- **cryptology**: both of above
- **encryption**: transforming *plain text* to *cipher text*
- **decryption**: recovering *plain text* from *cipher text*
- encryption scheme, cipher, cryptosystem: a mechanism for encryption and decryption

Goals of cryptography

Cryptography can be directly used to help ensure these security properties:

- confidentiality preventing open access
- ▶ **integrity** preventing unauthorized modification
- authentication verification of identity Sometimes split into:
 - entity authentication
 - data origin authentication
- non-repudiation preventing denial of actions

We want to ensure these properties, even when another party may eavesdrop or intercept messages.

Carefully designed **cryptographic protocols** help this.

Cryptographic primitives

Protocols are built using **cryptographic primitives**, parametrised on 0, 1, or 2 **keys**.

Unkeyed	Secret key	Public key
Random sequences One-way permutations Hash functions	Symmetric-key ciphers — block and stream Keyed hash functions (aka MACs) Identification primitives Digital signatures Pseudorandom sequences	Public-key ciphers Digital signatures Identification primitives

Familiar examples:

Hash functions: MD5, SHA-1, SHA-256
 Symmetric block ciphers: DES, 3DES, AES
 Public key ciphers: RSA, El Gammal
 Digital signature schemes: RSA, DSA

Notation and example applications

- ▶ Hash functions h(m)
 - integrity: "fingerprint" provides tamper evidence
 - message compression: hash-then-sign schemes
- ▶ Symmetric block ciphers $E_k(m)$, $D_k^{-1}(m)$
 - bulk encryption: network comms, data storage
- ▶ Public key (asymmetric) ciphers $E_e(m)$, $D_d(m)$
 - key exchange: establishing shared keys for symmetric ciphers
- ▶ Digital signature schemes $S_A(m)$, $V_A(m,s)$
 - key signing: public key infrastructures (PKIs)

Choosing primitives

- Choice of primitives influenced by:
 - functionality needed
 - performance
 - implementation ease
 - degree of security
- ▶ Degree of security is tricky: may consider
 - primitives are "perfect", maybe "unbreakable"
 - what is the worst that can happen?
 - primitives are "imperfect"
 - what does attacker know?
 - how much effort can attacker spend?

¹Based on original lecture notes by David Aspinall

Degree of security: two views

Assume perfect cryptography primitives

- Primitives are operators in an abstract data type.
- Operators are perfect (cannot break encryption).
- Other assumptions, e.g., key text differentiable from cipher text.
- Used for formal analysis of security protocol correctness. Correctness statements are relative to assumptions about primitives.

Model real cryptography primitives

- Attacker knowledge may allow cryptanalysis
- ► Consider specific algorithms (MD5, DES, etc.).
- Analyse design of cryptosystem (security, "strength") and algorithms (security, efficiency).
- Study cryptographic notions of security (information-theoretic, complexity-theoretic, probabilistic, . . .).

Cryptanalysis attacks

- Setup: have $c_1 = E_k(m_1), \dots, c_n = E_k(m_n)$ for small n.
- ▶ Best outcome: find k or algorithm for D_k^{-1} .
- ► Try to better **brute-force** (exhaustive search).

Attack type Attacker knowledge

Ciphertext only the c_i (deduce at least m_i) **Known plaintext** the c_i and m_i

Chosen plaintext c_i for chosen m_i Adaptive chosen plaintext as above, but iterative

Chosen ciphertext $c_i, m_i = D_d(c_i)$. Find decryption key d.

"Rubber-hose" bribery, torture, or blackmail
"Purchase-key" (not cryptanalysis, but v successful)

Security of primitives: two issues

Openness vs security-by-obscurity

- Kerckhoffs' desiderata (1883) recommends that for keyed ciphers, security should lie wholly in the key. "Compromise of the system details should not inconvenience the correspondents"
- Nowadays, cryptosystems usually have an open design, reviewed by as many experts as possible. Often security-by-obscurity fails.

► Key size in encryption systems

- Necessary but not sufficient to have a key space large enough to prevent feasible brute force attack.
- Rule-of-thumb: a key space of 2⁸⁰ is currently considered large enough. But this is a very simplistic view!

Bijections

- Recall that a bijection is a mathematical function which is one-to-one (injective) and onto (surjective).
- ▶ In particular, if $f: X \to Y$ is a bijection, then for all $y \in Y$, there is a unique $x \in X$ such that f(x) = y. This unique x is given by the *inverse* function $f^{-1}: Y \to X$.

Bijections are used as the basis of cryptography, for encryption. If f is an encryption transformation, then f^{-1} is the corresponding decryption transformation.

Why restrict to bijections? If a non-injective function were used as as an encryption transformation, it would not be possible to decrypt to a unique plain text.

(Saying this, non-bijections, in fact non-functions, *are* used as encryption transformations. Can you imagine how?)

Message spaces

We assume:

- A set M, the message space. M holds symbol strings, e.g., binary, English. Elements m ∈ M are called plaintexts.
- A set C, the ciphertext space.
 C also consists of strings of symbols.
 Elements c ∈ C are called ciphertexts.
- Each space is given over some alphabet, a set A. For example, we may consider A to be the letters of the English alphabet A-Z, or the set of binary digits {0, 1}. (Of course, any alphabet can be encoded using words over {0, 1}).

Cryptography systems

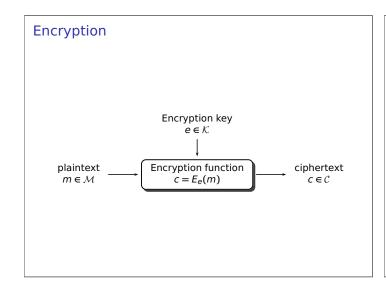
- ► An encryption transformation is a bijection $E: \mathcal{M} \rightarrow \mathcal{C}$.
- ► A decryption transformation is a bijection $D: C \to M$.

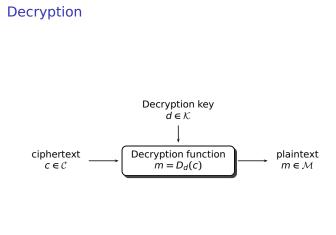
Encryption and decryption transformations are indexed using *keys*.

- ▶ The *key space* \mathcal{K} is a finite set of *keys* $k \in \mathcal{K}$.
- An encryption scheme consists of two sets indexed by keys
 - ▶ a family of encryption functions $\{E_e \mid e \in \mathcal{K}\}$
 - ▶ a family of decryption functions $\{D_d \mid d \in \mathcal{K}\}$

such that for each $e \in \mathcal{K}$, there is a unique $d \in \mathcal{K}$ with $D_d = E_a^{-1}$. We call such a pair (e, d) a key pair.

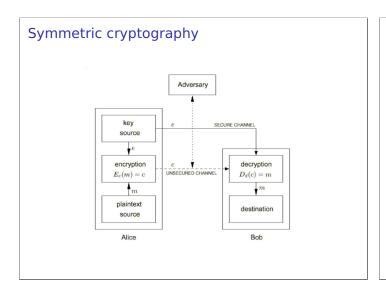
An encryption scheme is also known as a cryptography system or a cipher.





Symmetric and asymmetric cryptography

- **symmetric** cryptography
 - e and d are (essentially) the same
 - aka secret-key, shared-key, single-key, conventional
- ► asymmetric cryptography
 - ▶ Given *e*, it is (computationally) infeasible to find *d*.
 - ▶ aka public-key (PK), since e can be made public.
- Of course, the key-pair relation is not the only difference between symmetric and asymmetric cryptography. Other differences arise from characteristics of known algorithms and usage modes.
- Note: these definitions are imprecise: to be exact, one should define the meanings of "essentially" and "computationally infeasible".



Asymmetry: a ground breaking discovery!

- Our framework builds in the ideas of public key cryptography, but we shouldn't forget how truly ground breaking its discovery was.
- Secure channels are difficult and costly to implement. How to deliver secret keys through unsecured channels had confounded thinkers for many centuries.

If you can read everything I write, I cannot rely on any secret that has gone before, how can I possibly send a confidential message to my friend which you cannot also understand?

► The answer uses a creative leap of innovation (two keys, one public), as well relying on some clever maths in its implementation (*trapdoor one-way functions*).

One-way functions

A function $f: X \rightarrow Y$ is called a **one-way function** if

- ▶ it is feasible to compute f(x) for all $x \in X$, but
- it is infeasible to find any x in the pre-image of f, such that f(x) = y, for a randomly chosen y ∈ Imf. (If f is bijective, this means it is infeasible to compute f⁻¹(y)).

By definition, a one-way function is not useful for encryption. But it may be useful as a *cryptographic* or *one-way* hash function.

The definition above is vague: to be exact, we should give precise notions of *feasible* and *infeasible*. This is possible, but so far **no-one has proved the existence of a true one-way function**. Some functions used in modern ciphers are properly called *candidate one-way functions*, which means that there is a body of belief that they are one-way.

Trapdoor one-way functions

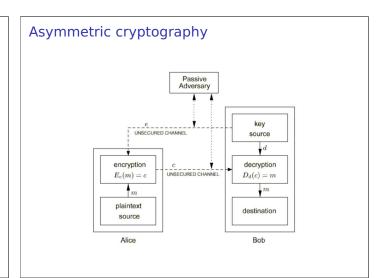
A **trapdoor one-way function** is a one-way function f that has a "trapdoor": given some additional information, it is feasible to compute an x such that f(x) = y, for any $y \in \text{Im } f$.

These are just what we need for public key crypto: the private key is the trapdoor information.

Again. we know *candidates*, but no function has yet

Again, we know *candidates*, but no function has ye been proved to be a trapdoor one-way function.

- In principle, there is a possibility of breaking crypto systems by new algorithms based on advances in mathematics and cryptanalysis.
- ▶ It's unlikely that one-way functions do *not* exist; some hash functions are as secure as NP-complete problems.
- Catastrophic failure for present functions is less common than gradual failure due to advances in computation power and (non-revolutionary but clever) algorithms or cryptanalysis, bringing some attacks closer to feasibility.



References

Some content is adapted from Chapter 1 of the HAC. Schneier's text is readable (but dated). Smart's book is more rigorous. Kahn's book has a detailed history.

- A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, eds. Handbook of Applied Cryptography.
 - CRC Press, 1997. Online: http://www.cacr.math.uwaterloo.ca/hac.
- Bruce Schneier. Applied Cryptography.
- John Wiley & Sons, second edition, 1996.

 Nigel Smart. Cryptography: An Introduction.
- http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

 David Kahn. The Codebreakers.
- David Kahn. The Codebreakers.
 Simon & Schuster, revised edition, 1997.

Recommended Reading

Chapter 1 of HAC. Chapter 3, Sections 11.1–11.2 of Smart (3rd Ed).