
Cryptography IV:
Asymmetric Ciphers
Computer Security Lecture 9

Mike Just1

School of Informatics
University of Edinburgh

11th February 2010

1Based on original lecture notes by David Aspinall



Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary



Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary



History

É Asymmetric or public-key cryptography
É Originally attributed to Diffie and Hellman in 1975,
but later discovered in British classified work of
James Ellis in 1971

É Basic idea involves altering traditional symmetry of
cryptographic protocols to convey additional info in
a public key. The message sender uses this public
key to convey a secret message to the receipient,
without requiring a secure channel to share key
information.

É Traditionally presented as a means of encrypting
messages. In practice today, public key algorithms
are used to exchange symmetric keys
É Public keys are key encrypting keys
É Symmetric keys are data encryptingn keys

É Public keys also used to provide integrity through
digital signatures (later lecture)



Prime numbers
É A natural number p ≥ 2 is prime if 1 and p are its
only positive divisors.

É For x ≥ 17, then π(x), the number of primes less
than or equal to x, is approximated by:

x
lnx < π(x) < 1.25506 x

lnx

Fundamental theorem of arithmetic
Every natural number n ≥ 2 has a unique factorization
as a product of prime powers: pe11 · · ·penn for distinct
primes pi and positive ei.



Prime numbers
É A natural number p ≥ 2 is prime if 1 and p are its
only positive divisors.

É For x ≥ 17, then π(x), the number of primes less
than or equal to x, is approximated by:

x
lnx < π(x) < 1.25506 x

lnx

Fundamental theorem of arithmetic
Every natural number n ≥ 2 has a unique factorization
as a product of prime powers: pe11 · · ·penn for distinct
primes pi and positive ei.



Prime numbers
É A natural number p ≥ 2 is prime if 1 and p are its
only positive divisors.

É For x ≥ 17, then π(x), the number of primes less
than or equal to x, is approximated by:

x
lnx < π(x) < 1.25506 x

lnx

Fundamental theorem of arithmetic
Every natural number n ≥ 2 has a unique factorization
as a product of prime powers: pe11 · · ·penn for distinct
primes pi and positive ei.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).

É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).

É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).

É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).
É For prime n, ϕ(n) = n− 1

É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).
É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).
É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).
É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).
É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.
É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Integers modulo n: Zn and Z∗
n

É Let n be a positive integer. The set

Zn = {0, . . . ,n− 1}

contains (equivalence classes of) integers mod n.

É Let a ∈ Zn. The multiplicative inverse of a
modulo n is the unique x ∈ Zn such that

ax ≡ 1 (mod n).

Such an x exists iff gcd(a,n) = 1.
É We can define a multiplicative group Z∗

n by

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

É Facts:

É Z∗
n is closed under multiplication

É |Z∗
n | = ϕ(n)

É For prime n, Z∗
n = {1, . . . ,n− 1}.



Integers modulo n: Zn and Z∗
n

É Let n be a positive integer. The set

Zn = {0, . . . ,n− 1}

contains (equivalence classes of) integers mod n.
É Let a ∈ Zn. The multiplicative inverse of a
modulo n is the unique x ∈ Zn such that

ax ≡ 1 (mod n).

Such an x exists iff gcd(a,n) = 1.

É We can define a multiplicative group Z∗
n by

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

É Facts:

É Z∗
n is closed under multiplication

É |Z∗
n | = ϕ(n)

É For prime n, Z∗
n = {1, . . . ,n− 1}.



Integers modulo n: Zn and Z∗
n

É Let n be a positive integer. The set

Zn = {0, . . . ,n− 1}

contains (equivalence classes of) integers mod n.
É Let a ∈ Zn. The multiplicative inverse of a
modulo n is the unique x ∈ Zn such that

ax ≡ 1 (mod n).

Such an x exists iff gcd(a,n) = 1.
É We can define a multiplicative group Z∗

n by

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

É Facts:

É Z∗
n is closed under multiplication

É |Z∗
n | = ϕ(n)

É For prime n, Z∗
n = {1, . . . ,n− 1}.



Integers modulo n: Zn and Z∗
n

É Let n be a positive integer. The set

Zn = {0, . . . ,n− 1}

contains (equivalence classes of) integers mod n.
É Let a ∈ Zn. The multiplicative inverse of a
modulo n is the unique x ∈ Zn such that

ax ≡ 1 (mod n).

Such an x exists iff gcd(a,n) = 1.
É We can define a multiplicative group Z∗

n by

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

É Facts:

É Z∗
n is closed under multiplication

É |Z∗
n | = ϕ(n)

É For prime n, Z∗
n = {1, . . . ,n− 1}.



Integers modulo n: Zn and Z∗
n

É Let n be a positive integer. The set

Zn = {0, . . . ,n− 1}

contains (equivalence classes of) integers mod n.
É Let a ∈ Zn. The multiplicative inverse of a
modulo n is the unique x ∈ Zn such that

ax ≡ 1 (mod n).

Such an x exists iff gcd(a,n) = 1.
É We can define a multiplicative group Z∗

n by

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

É Facts:
É Z∗

n is closed under multiplication

É |Z∗
n | = ϕ(n)

É For prime n, Z∗
n = {1, . . . ,n− 1}.



Integers modulo n: Zn and Z∗
n

É Let n be a positive integer. The set

Zn = {0, . . . ,n− 1}

contains (equivalence classes of) integers mod n.
É Let a ∈ Zn. The multiplicative inverse of a
modulo n is the unique x ∈ Zn such that

ax ≡ 1 (mod n).

Such an x exists iff gcd(a,n) = 1.
É We can define a multiplicative group Z∗

n by

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

É Facts:
É Z∗

n is closed under multiplication
É |Z∗

n | = ϕ(n)

É For prime n, Z∗
n = {1, . . . ,n− 1}.



Integers modulo n: Zn and Z∗
n

É Let n be a positive integer. The set

Zn = {0, . . . ,n− 1}

contains (equivalence classes of) integers mod n.
É Let a ∈ Zn. The multiplicative inverse of a
modulo n is the unique x ∈ Zn such that

ax ≡ 1 (mod n).

Such an x exists iff gcd(a,n) = 1.
É We can define a multiplicative group Z∗

n by

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

É Facts:
É Z∗

n is closed under multiplication
É |Z∗

n | = ϕ(n)
É For prime n, Z∗

n = {1, . . . ,n− 1}.



Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:

É repeatedly test ap−1 mod p for random a
É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.

É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5
É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).



Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:

É repeatedly test ap−1 mod p for random a
É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.

É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5
É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).



Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:

É repeatedly test ap−1 mod p for random a
É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.

É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5
É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).



Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:
É repeatedly test ap−1 mod p for random a

É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.

É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5
É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).



Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:
É repeatedly test ap−1 mod p for random a
É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.

É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5
É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).



Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:
É repeatedly test ap−1 mod p for random a
É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.

É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5
É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).



Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:
É repeatedly test ap−1 mod p for random a
É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.
É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5

É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).



Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:
É repeatedly test ap−1 mod p for random a
É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.
É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5
É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).



Cyclic groups

É Let a ∈ Z∗
n .

The order of a is the least t > 0 st at ≡ 1 (mod n).

É If g ≥ 2 has order ϕ(n), then Z∗
n is cyclic and g is a

generator (aka primitive root) of Z∗
n .

É Z∗
n is cyclic iff n = 2,4,pk,2pk for odd primes p.

É The discrete logarithm of b wrt g is the x st
gx ≡ b (mod n).

É There is an efficient algorithm for computing
discrete logs in Z∗

p if p− 1 has smooth factors.



Cyclic groups

É Let a ∈ Z∗
n .

The order of a is the least t > 0 st at ≡ 1 (mod n).
É If g ≥ 2 has order ϕ(n), then Z∗

n is cyclic and g is a
generator (aka primitive root) of Z∗

n .

É Z∗
n is cyclic iff n = 2,4,pk,2pk for odd primes p.

É The discrete logarithm of b wrt g is the x st
gx ≡ b (mod n).

É There is an efficient algorithm for computing
discrete logs in Z∗

p if p− 1 has smooth factors.



Cyclic groups

É Let a ∈ Z∗
n .

The order of a is the least t > 0 st at ≡ 1 (mod n).
É If g ≥ 2 has order ϕ(n), then Z∗

n is cyclic and g is a
generator (aka primitive root) of Z∗

n .

É Z∗
n is cyclic iff n = 2,4,pk,2pk for odd primes p.

É The discrete logarithm of b wrt g is the x st
gx ≡ b (mod n).

É There is an efficient algorithm for computing
discrete logs in Z∗

p if p− 1 has smooth factors.



Cyclic groups

É Let a ∈ Z∗
n .

The order of a is the least t > 0 st at ≡ 1 (mod n).
É If g ≥ 2 has order ϕ(n), then Z∗

n is cyclic and g is a
generator (aka primitive root) of Z∗

n .

É Z∗
n is cyclic iff n = 2,4,pk,2pk for odd primes p.

É The discrete logarithm of b wrt g is the x st
gx ≡ b (mod n).

É There is an efficient algorithm for computing
discrete logs in Z∗

p if p− 1 has smooth factors.



Cyclic groups

É Let a ∈ Z∗
n .

The order of a is the least t > 0 st at ≡ 1 (mod n).
É If g ≥ 2 has order ϕ(n), then Z∗

n is cyclic and g is a
generator (aka primitive root) of Z∗

n .

É Z∗
n is cyclic iff n = 2,4,pk,2pk for odd primes p.

É The discrete logarithm of b wrt g is the x st
gx ≡ b (mod n).

É There is an efficient algorithm for computing
discrete logs in Z∗

p if p− 1 has smooth factors.



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |

= ϕ(5) = 4
É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1

= 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1

= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1

= 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.

É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.

É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are:

2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.

É In Z∗
5 , the discrete log of 4 for base 3 is 2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is

2



Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2



Example: Z∗
15

É Here is the multiplication table for Z∗
15, showing xy

(mod 15).

1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7
11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

É |Z∗
15| = ϕ(15) = (3− 1)∗ (5− 1) = 8.

É This group is not cyclic.
Exercise: find orders of each element.



Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary



RSA
É A key-pair is based on product of two large, distinct,
random secret primes, n=pq with p and q roughly
the same size, together with a random integer e
with 1 < e < ϕ and gcd(e, ϕ) = 1, where

ϕ = ϕ(n) = (p− 1)(q− 1).
Public key is (n,e) and n is called the modulus.

É Private key is d, unique s.t. ed ≡ 1 (mod ϕ).
É Message and cipher spaceM = C = {0, . . . ,n− 1}.
É Encryption is exponentiation with public key e.
Decryption is exponentiation with private key d.

E(n,e)(m) = me mod n
Dd(c) = cd mod n

É Decryption works, since for some k, ed = 1+ kϕ and

(me)d ≡med ≡m1+kϕ ≡mmkϕ ≡m (mod n)

using Fermat’s theorem. (Exercise: fill details in).



RSA
É A key-pair is based on product of two large, distinct,
random secret primes, n=pq with p and q roughly
the same size, together with a random integer e
with 1 < e < ϕ and gcd(e, ϕ) = 1, where

ϕ = ϕ(n) = (p− 1)(q− 1).
Public key is (n,e) and n is called the modulus.

É Private key is d, unique s.t. ed ≡ 1 (mod ϕ).

É Message and cipher spaceM = C = {0, . . . ,n− 1}.
É Encryption is exponentiation with public key e.
Decryption is exponentiation with private key d.

E(n,e)(m) = me mod n
Dd(c) = cd mod n

É Decryption works, since for some k, ed = 1+ kϕ and

(me)d ≡med ≡m1+kϕ ≡mmkϕ ≡m (mod n)

using Fermat’s theorem. (Exercise: fill details in).



RSA
É A key-pair is based on product of two large, distinct,
random secret primes, n=pq with p and q roughly
the same size, together with a random integer e
with 1 < e < ϕ and gcd(e, ϕ) = 1, where

ϕ = ϕ(n) = (p− 1)(q− 1).
Public key is (n,e) and n is called the modulus.

É Private key is d, unique s.t. ed ≡ 1 (mod ϕ).
É Message and cipher spaceM = C = {0, . . . ,n− 1}.

É Encryption is exponentiation with public key e.
Decryption is exponentiation with private key d.

E(n,e)(m) = me mod n
Dd(c) = cd mod n

É Decryption works, since for some k, ed = 1+ kϕ and

(me)d ≡med ≡m1+kϕ ≡mmkϕ ≡m (mod n)

using Fermat’s theorem. (Exercise: fill details in).



RSA
É A key-pair is based on product of two large, distinct,
random secret primes, n=pq with p and q roughly
the same size, together with a random integer e
with 1 < e < ϕ and gcd(e, ϕ) = 1, where

ϕ = ϕ(n) = (p− 1)(q− 1).
Public key is (n,e) and n is called the modulus.

É Private key is d, unique s.t. ed ≡ 1 (mod ϕ).
É Message and cipher spaceM = C = {0, . . . ,n− 1}.
É Encryption is exponentiation with public key e.
Decryption is exponentiation with private key d.

E(n,e)(m) = me mod n
Dd(c) = cd mod n

É Decryption works, since for some k, ed = 1+ kϕ and

(me)d ≡med ≡m1+kϕ ≡mmkϕ ≡m (mod n)

using Fermat’s theorem. (Exercise: fill details in).



RSA
É A key-pair is based on product of two large, distinct,
random secret primes, n=pq with p and q roughly
the same size, together with a random integer e
with 1 < e < ϕ and gcd(e, ϕ) = 1, where

ϕ = ϕ(n) = (p− 1)(q− 1).
Public key is (n,e) and n is called the modulus.

É Private key is d, unique s.t. ed ≡ 1 (mod ϕ).
É Message and cipher spaceM = C = {0, . . . ,n− 1}.
É Encryption is exponentiation with public key e.
Decryption is exponentiation with private key d.

E(n,e)(m) = me mod n
Dd(c) = cd mod n

É Decryption works, since for some k, ed = 1+ kϕ and

(me)d ≡med ≡m1+kϕ ≡mmkϕ ≡m (mod n)

using Fermat’s theorem. (Exercise: fill details in).



RSA remarks
É Recall that RSA is an example of a reversible
public-key encryption scheme. This is because e
and d are symmetric in the definition. RSA digital
signatures make use of this.

É RSA is often used with randomization (e.g., salting
with random appendix) to prevent chosen-plaintext
and other attacks.

É It’s the most popular and cryptanalysed public-key
algorithm. Largest modulus factored in the (now
defunct) RSA challenge is 768 bits (232 digits),
factored using the Number Field Sieve (NFS) on 12
December 2009.

É It took the equivalent of 2000 years of computing on
a single core 2.2GHz AMD Opteron. On the order of
267 instructions were carried out.

É Factoring a 1024 bit modulus would take about 1000
times more work (and would be achievable in less
than 5 years from now).

http://www.rsasecurity.com/rsalabs/


RSA remarks
É Recall that RSA is an example of a reversible
public-key encryption scheme. This is because e
and d are symmetric in the definition. RSA digital
signatures make use of this.

É RSA is often used with randomization (e.g., salting
with random appendix) to prevent chosen-plaintext
and other attacks.

É It’s the most popular and cryptanalysed public-key
algorithm. Largest modulus factored in the (now
defunct) RSA challenge is 768 bits (232 digits),
factored using the Number Field Sieve (NFS) on 12
December 2009.

É It took the equivalent of 2000 years of computing on
a single core 2.2GHz AMD Opteron. On the order of
267 instructions were carried out.

É Factoring a 1024 bit modulus would take about 1000
times more work (and would be achievable in less
than 5 years from now).

http://www.rsasecurity.com/rsalabs/


RSA remarks
É Recall that RSA is an example of a reversible
public-key encryption scheme. This is because e
and d are symmetric in the definition. RSA digital
signatures make use of this.

É RSA is often used with randomization (e.g., salting
with random appendix) to prevent chosen-plaintext
and other attacks.

É It’s the most popular and cryptanalysed public-key
algorithm. Largest modulus factored in the (now
defunct) RSA challenge is 768 bits (232 digits),
factored using the Number Field Sieve (NFS) on 12
December 2009.

É It took the equivalent of 2000 years of computing on
a single core 2.2GHz AMD Opteron. On the order of
267 instructions were carried out.

É Factoring a 1024 bit modulus would take about 1000
times more work (and would be achievable in less
than 5 years from now).

http://www.rsasecurity.com/rsalabs/


RSA remarks
É Recall that RSA is an example of a reversible
public-key encryption scheme. This is because e
and d are symmetric in the definition. RSA digital
signatures make use of this.

É RSA is often used with randomization (e.g., salting
with random appendix) to prevent chosen-plaintext
and other attacks.

É It’s the most popular and cryptanalysed public-key
algorithm. Largest modulus factored in the (now
defunct) RSA challenge is 768 bits (232 digits),
factored using the Number Field Sieve (NFS) on 12
December 2009.
É It took the equivalent of 2000 years of computing on
a single core 2.2GHz AMD Opteron. On the order of
267 instructions were carried out.

É Factoring a 1024 bit modulus would take about 1000
times more work (and would be achievable in less
than 5 years from now).

http://www.rsasecurity.com/rsalabs/


RSA remarks
É Recall that RSA is an example of a reversible
public-key encryption scheme. This is because e
and d are symmetric in the definition. RSA digital
signatures make use of this.

É RSA is often used with randomization (e.g., salting
with random appendix) to prevent chosen-plaintext
and other attacks.

É It’s the most popular and cryptanalysed public-key
algorithm. Largest modulus factored in the (now
defunct) RSA challenge is 768 bits (232 digits),
factored using the Number Field Sieve (NFS) on 12
December 2009.
É It took the equivalent of 2000 years of computing on
a single core 2.2GHz AMD Opteron. On the order of
267 instructions were carried out.

É Factoring a 1024 bit modulus would take about 1000
times more work (and would be achievable in less
than 5 years from now).

http://www.rsasecurity.com/rsalabs/


RSA Remarks . . .

É In practice, RSA is used to encrypt symmetric keys,
not messages

É Like most public key algorithms, the RSA key size is
larger, and the computations are more expensive
(compared to AES, for example)

É This is believed to be a necessary result of the key
being publicly available

É With regard to attack complexity based upon an
n-bit key
É A worst-case attack algorithm on a symmetric
cipher would take O(2n) work (exponential).

É A worst-case attack algorithm for RSA is dependent
upon the complexity of factoring, and thus would
take O(eo(n)) (sub-exponential)



Cryptographic Reference Problems I

FACTORING Integer factorization. Given positive n, find
its prime factorization, i.e., distinct pi such that
n = pe11 · · ·penn for some ei ≥ 1.

SQRROOT Given a such that a ≡ x2 (mod n), find x.
RSAP RSA inversion. Given n such that n = pq for

some odd primes p 6= q, and e such that
gcd(e, (p− 1), (q− 1)) = 1, and c, find m such
that me ≡ c (mod n).

Note: SQRROOT=P FACTORING and RSAP≤P FACTORING

É A ≤P B means there is a polynomial time (efficient)
reduction from problem A to problem B.

É A =P B means A ≤P B and B ≤P A
É So: RSAP is no harder than FACTORING.
Is it easier? An open question.



Cryptographic Reference Problems I

FACTORING Integer factorization. Given positive n, find
its prime factorization, i.e., distinct pi such that
n = pe11 · · ·penn for some ei ≥ 1.

SQRROOT Given a such that a ≡ x2 (mod n), find x.

RSAP RSA inversion. Given n such that n = pq for
some odd primes p 6= q, and e such that
gcd(e, (p− 1), (q− 1)) = 1, and c, find m such
that me ≡ c (mod n).

Note: SQRROOT=P FACTORING and RSAP≤P FACTORING

É A ≤P B means there is a polynomial time (efficient)
reduction from problem A to problem B.

É A =P B means A ≤P B and B ≤P A
É So: RSAP is no harder than FACTORING.
Is it easier? An open question.



Cryptographic Reference Problems I

FACTORING Integer factorization. Given positive n, find
its prime factorization, i.e., distinct pi such that
n = pe11 · · ·penn for some ei ≥ 1.

SQRROOT Given a such that a ≡ x2 (mod n), find x.
RSAP RSA inversion. Given n such that n = pq for

some odd primes p 6= q, and e such that
gcd(e, (p− 1), (q− 1)) = 1, and c, find m such
that me ≡ c (mod n).

Note: SQRROOT=P FACTORING and RSAP≤P FACTORING

É A ≤P B means there is a polynomial time (efficient)
reduction from problem A to problem B.

É A =P B means A ≤P B and B ≤P A
É So: RSAP is no harder than FACTORING.
Is it easier? An open question.



Cryptographic Reference Problems I

FACTORING Integer factorization. Given positive n, find
its prime factorization, i.e., distinct pi such that
n = pe11 · · ·penn for some ei ≥ 1.

SQRROOT Given a such that a ≡ x2 (mod n), find x.
RSAP RSA inversion. Given n such that n = pq for

some odd primes p 6= q, and e such that
gcd(e, (p− 1), (q− 1)) = 1, and c, find m such
that me ≡ c (mod n).

Note: SQRROOT=P FACTORING and RSAP≤P FACTORING

É A ≤P B means there is a polynomial time (efficient)
reduction from problem A to problem B.

É A =P B means A ≤P B and B ≤P A
É So: RSAP is no harder than FACTORING.
Is it easier? An open question.



Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary



Cryptographic Reference Problems II

DLP Discrete logarithm problem. Given prime p, a
generator g of Z∗

p , and an element a ∈ Z∗
p , find the

integer x, with 0 ≤ x ≤ p− 2 such that gx ≡ a
(mod p).

DHP Diffie-Hellman problem. Given prime p, a generator
g of Z∗

p , and elements ga mod p and gb mod p, find

gab mod p.

Note: DHP≤PDLP.
In some cases, DHP=PDLP.



Cryptographic Reference Problems II

DLP Discrete logarithm problem. Given prime p, a
generator g of Z∗

p , and an element a ∈ Z∗
p , find the

integer x, with 0 ≤ x ≤ p− 2 such that gx ≡ a
(mod p).

DHP Diffie-Hellman problem. Given prime p, a generator
g of Z∗

p , and elements ga mod p and gb mod p, find

gab mod p.

Note: DHP≤PDLP.
In some cases, DHP=PDLP.



Cryptographic Reference Problems II

DLP Discrete logarithm problem. Given prime p, a
generator g of Z∗

p , and an element a ∈ Z∗
p , find the

integer x, with 0 ≤ x ≤ p− 2 such that gx ≡ a
(mod p).

DHP Diffie-Hellman problem. Given prime p, a generator
g of Z∗

p , and elements ga mod p and gb mod p, find

gab mod p.

Note: DHP≤PDLP.
In some cases, DHP=PDLP.



Diffie-Hellman key agreement

É Diffie-Hellman key agreement allows two principals
to agree a shared key without authentication. Initial
setup: choose and publish a large “secure” prime p
and generator g of Z∗

p .

Message 1. A→ B: gx mod p
Message 2. B→ A: gy mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É B receives gx, computes shared key K = (gx)y mod p.
É A receives gy, computes shared key K = (gy)x mod p.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
Exercise: try some artificial examples with p = 11,
g = 2. Show a MITM attack against the protocol.



Diffie-Hellman key agreement

É Diffie-Hellman key agreement allows two principals
to agree a shared key without authentication. Initial
setup: choose and publish a large “secure” prime p
and generator g of Z∗

p .

Message 1. A→ B: gx mod p
Message 2. B→ A: gy mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É B receives gx, computes shared key K = (gx)y mod p.
É A receives gy, computes shared key K = (gy)x mod p.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
Exercise: try some artificial examples with p = 11,
g = 2. Show a MITM attack against the protocol.



Diffie-Hellman key agreement

É Diffie-Hellman key agreement allows two principals
to agree a shared key without authentication. Initial
setup: choose and publish a large “secure” prime p
and generator g of Z∗

p .

Message 1. A→ B: gx mod p
Message 2. B→ A: gy mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.

É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É B receives gx, computes shared key K = (gx)y mod p.
É A receives gy, computes shared key K = (gy)x mod p.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
Exercise: try some artificial examples with p = 11,
g = 2. Show a MITM attack against the protocol.



Diffie-Hellman key agreement

É Diffie-Hellman key agreement allows two principals
to agree a shared key without authentication. Initial
setup: choose and publish a large “secure” prime p
and generator g of Z∗

p .

Message 1. A→ B: gx mod p
Message 2. B→ A: gy mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.

É B receives gx, computes shared key K = (gx)y mod p.
É A receives gy, computes shared key K = (gy)x mod p.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
Exercise: try some artificial examples with p = 11,
g = 2. Show a MITM attack against the protocol.



Diffie-Hellman key agreement

É Diffie-Hellman key agreement allows two principals
to agree a shared key without authentication. Initial
setup: choose and publish a large “secure” prime p
and generator g of Z∗

p .

Message 1. A→ B: gx mod p
Message 2. B→ A: gy mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É B receives gx, computes shared key K = (gx)y mod p.

É A receives gy, computes shared key K = (gy)x mod p.
É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
Exercise: try some artificial examples with p = 11,
g = 2. Show a MITM attack against the protocol.



Diffie-Hellman key agreement

É Diffie-Hellman key agreement allows two principals
to agree a shared key without authentication. Initial
setup: choose and publish a large “secure” prime p
and generator g of Z∗

p .

Message 1. A→ B: gx mod p
Message 2. B→ A: gy mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É B receives gx, computes shared key K = (gx)y mod p.
É A receives gy, computes shared key K = (gy)x mod p.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
Exercise: try some artificial examples with p = 11,
g = 2. Show a MITM attack against the protocol.



Diffie-Hellman key agreement

É Diffie-Hellman key agreement allows two principals
to agree a shared key without authentication. Initial
setup: choose and publish a large “secure” prime p
and generator g of Z∗

p .

Message 1. A→ B: gx mod p
Message 2. B→ A: gy mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É B receives gx, computes shared key K = (gx)y mod p.
É A receives gy, computes shared key K = (gy)x mod p.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
Exercise: try some artificial examples with p = 11,
g = 2. Show a MITM attack against the protocol.



Shamir’s ‘No Key’ Key Transfer
É Shamir’s ‘No Key’ algorithm captures our earlier
class demonstration, similar to Diffie-Hellman.
Initial setup: choose and publish a large “secure”
prime p and generator g of Z∗

p .

Message 1. A→ B: Kx mod p
Message 2. B→ A: Kxy mod p
Message 3. A→ B: Ky mod p

É A chooses random z, 1 ≤ z < p− 1, and computes
the symmetric key K = gz mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É A computes x−1 mod p− 1, sends msg 3.
É B receives Ky mod p, computes y−1 mod p− 1 and
recovers key K.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.



Shamir’s ‘No Key’ Key Transfer
É Shamir’s ‘No Key’ algorithm captures our earlier
class demonstration, similar to Diffie-Hellman.
Initial setup: choose and publish a large “secure”
prime p and generator g of Z∗

p .

Message 1. A→ B: Kx mod p
Message 2. B→ A: Kxy mod p
Message 3. A→ B: Ky mod p

É A chooses random z, 1 ≤ z < p− 1, and computes
the symmetric key K = gz mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É A computes x−1 mod p− 1, sends msg 3.
É B receives Ky mod p, computes y−1 mod p− 1 and
recovers key K.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.



Shamir’s ‘No Key’ Key Transfer
É Shamir’s ‘No Key’ algorithm captures our earlier
class demonstration, similar to Diffie-Hellman.
Initial setup: choose and publish a large “secure”
prime p and generator g of Z∗

p .

Message 1. A→ B: Kx mod p
Message 2. B→ A: Kxy mod p
Message 3. A→ B: Ky mod p

É A chooses random z, 1 ≤ z < p− 1, and computes
the symmetric key K = gz mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.

É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É A computes x−1 mod p− 1, sends msg 3.
É B receives Ky mod p, computes y−1 mod p− 1 and
recovers key K.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.



Shamir’s ‘No Key’ Key Transfer
É Shamir’s ‘No Key’ algorithm captures our earlier
class demonstration, similar to Diffie-Hellman.
Initial setup: choose and publish a large “secure”
prime p and generator g of Z∗

p .

Message 1. A→ B: Kx mod p
Message 2. B→ A: Kxy mod p
Message 3. A→ B: Ky mod p

É A chooses random z, 1 ≤ z < p− 1, and computes
the symmetric key K = gz mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.

É A computes x−1 mod p− 1, sends msg 3.
É B receives Ky mod p, computes y−1 mod p− 1 and
recovers key K.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.



Shamir’s ‘No Key’ Key Transfer
É Shamir’s ‘No Key’ algorithm captures our earlier
class demonstration, similar to Diffie-Hellman.
Initial setup: choose and publish a large “secure”
prime p and generator g of Z∗

p .

Message 1. A→ B: Kx mod p
Message 2. B→ A: Kxy mod p
Message 3. A→ B: Ky mod p

É A chooses random z, 1 ≤ z < p− 1, and computes
the symmetric key K = gz mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É A computes x−1 mod p− 1, sends msg 3.

É B receives Ky mod p, computes y−1 mod p− 1 and
recovers key K.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.



Shamir’s ‘No Key’ Key Transfer
É Shamir’s ‘No Key’ algorithm captures our earlier
class demonstration, similar to Diffie-Hellman.
Initial setup: choose and publish a large “secure”
prime p and generator g of Z∗

p .

Message 1. A→ B: Kx mod p
Message 2. B→ A: Kxy mod p
Message 3. A→ B: Ky mod p

É A chooses random z, 1 ≤ z < p− 1, and computes
the symmetric key K = gz mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É A computes x−1 mod p− 1, sends msg 3.
É B receives Ky mod p, computes y−1 mod p− 1 and
recovers key K.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.



Shamir’s ‘No Key’ Key Transfer
É Shamir’s ‘No Key’ algorithm captures our earlier
class demonstration, similar to Diffie-Hellman.
Initial setup: choose and publish a large “secure”
prime p and generator g of Z∗

p .

Message 1. A→ B: Kx mod p
Message 2. B→ A: Kxy mod p
Message 3. A→ B: Ky mod p

É A chooses random z, 1 ≤ z < p− 1, and computes
the symmetric key K = gz mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É A computes x−1 mod p− 1, sends msg 3.
É B receives Ky mod p, computes y−1 mod p− 1 and
recovers key K.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.



Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary



ElGamal encryption
É A key-pair is based on a large random prime p and
generator g of Z∗

p , and a random integer d. Public

key: (p,g,gd mod p), private key: d.

É The message spaceM = {0, . . . ,p− 1}, and the
encryption operation is given by selecting a random
integer r and computing a pair:

E(p,g,gd)(m) = (e,c) where e = gr mod p
c =m(gd)r mod p.

É Decryption takes an element of ciphertext
C =M×M, and computes:

Dd(e,c) = e−d cmod p where e−d = ep−1−d mod p.

É Decryption works because e−d = g−dr, so

Dd(e,c) ≡ g−drmgdr ≡ m (mod p).

É This is like using Diffie-Hellman to agree a key gdr

and encrypting m by multiplication.



ElGamal encryption
É A key-pair is based on a large random prime p and
generator g of Z∗

p , and a random integer d. Public

key: (p,g,gd mod p), private key: d.
É The message spaceM = {0, . . . ,p− 1}, and the
encryption operation is given by selecting a random
integer r and computing a pair:

E(p,g,gd)(m) = (e,c) where e = gr mod p
c =m(gd)r mod p.

É Decryption takes an element of ciphertext
C =M×M, and computes:

Dd(e,c) = e−d cmod p where e−d = ep−1−d mod p.

É Decryption works because e−d = g−dr, so

Dd(e,c) ≡ g−drmgdr ≡ m (mod p).

É This is like using Diffie-Hellman to agree a key gdr

and encrypting m by multiplication.



ElGamal encryption
É A key-pair is based on a large random prime p and
generator g of Z∗

p , and a random integer d. Public

key: (p,g,gd mod p), private key: d.
É The message spaceM = {0, . . . ,p− 1}, and the
encryption operation is given by selecting a random
integer r and computing a pair:

E(p,g,gd)(m) = (e,c) where e = gr mod p
c =m(gd)r mod p.

É Decryption takes an element of ciphertext
C =M×M, and computes:

Dd(e,c) = e−d cmod p where e−d = ep−1−d mod p.

É Decryption works because e−d = g−dr, so

Dd(e,c) ≡ g−drmgdr ≡ m (mod p).

É This is like using Diffie-Hellman to agree a key gdr

and encrypting m by multiplication.



ElGamal encryption
É A key-pair is based on a large random prime p and
generator g of Z∗

p , and a random integer d. Public

key: (p,g,gd mod p), private key: d.
É The message spaceM = {0, . . . ,p− 1}, and the
encryption operation is given by selecting a random
integer r and computing a pair:

E(p,g,gd)(m) = (e,c) where e = gr mod p
c =m(gd)r mod p.

É Decryption takes an element of ciphertext
C =M×M, and computes:

Dd(e,c) = e−d cmod p where e−d = ep−1−d mod p.

É Decryption works because e−d = g−dr, so

Dd(e,c) ≡ g−drmgdr ≡ m (mod p).

É This is like using Diffie-Hellman to agree a key gdr

and encrypting m by multiplication.



ElGamal encryption
É A key-pair is based on a large random prime p and
generator g of Z∗

p , and a random integer d. Public

key: (p,g,gd mod p), private key: d.
É The message spaceM = {0, . . . ,p− 1}, and the
encryption operation is given by selecting a random
integer r and computing a pair:

E(p,g,gd)(m) = (e,c) where e = gr mod p
c =m(gd)r mod p.

É Decryption takes an element of ciphertext
C =M×M, and computes:

Dd(e,c) = e−d cmod p where e−d = ep−1−d mod p.

É Decryption works because e−d = g−dr, so

Dd(e,c) ≡ g−drmgdr ≡ m (mod p).

É This is like using Diffie-Hellman to agree a key gdr

and encrypting m by multiplication.



ElGamal remarks
É ElGamal is an example of a randomized
encryption scheme, so no need to add salt. Security
relies in intractability of DHP. Choosing different r
for different messages is critical. Exercise: why?

É Efficiency:

É ciphertext twice as long as plaintext
É encryption requires two modular exponentiations,
which can be sped up by picking the random r with
some additional structure (with care).

É The prime p and generator g can be fixed for the
system, reducing the size of public keys. Then
exponentiation can be speeded up by
precomputation; however, so can the best-known
algorithm for calculating discrete logarithms, so a
larger modulus would be warranted.

É The security of ElGamal encryption and signing is
based on the intractability of the DHP for p. Several
other conditions are required.



ElGamal remarks
É ElGamal is an example of a randomized
encryption scheme, so no need to add salt. Security
relies in intractability of DHP. Choosing different r
for different messages is critical. Exercise: why?

É Efficiency:

É ciphertext twice as long as plaintext
É encryption requires two modular exponentiations,
which can be sped up by picking the random r with
some additional structure (with care).

É The prime p and generator g can be fixed for the
system, reducing the size of public keys. Then
exponentiation can be speeded up by
precomputation; however, so can the best-known
algorithm for calculating discrete logarithms, so a
larger modulus would be warranted.

É The security of ElGamal encryption and signing is
based on the intractability of the DHP for p. Several
other conditions are required.



ElGamal remarks
É ElGamal is an example of a randomized
encryption scheme, so no need to add salt. Security
relies in intractability of DHP. Choosing different r
for different messages is critical. Exercise: why?

É Efficiency:
É ciphertext twice as long as plaintext

É encryption requires two modular exponentiations,
which can be sped up by picking the random r with
some additional structure (with care).

É The prime p and generator g can be fixed for the
system, reducing the size of public keys. Then
exponentiation can be speeded up by
precomputation; however, so can the best-known
algorithm for calculating discrete logarithms, so a
larger modulus would be warranted.

É The security of ElGamal encryption and signing is
based on the intractability of the DHP for p. Several
other conditions are required.



ElGamal remarks
É ElGamal is an example of a randomized
encryption scheme, so no need to add salt. Security
relies in intractability of DHP. Choosing different r
for different messages is critical. Exercise: why?

É Efficiency:
É ciphertext twice as long as plaintext
É encryption requires two modular exponentiations,
which can be sped up by picking the random r with
some additional structure (with care).

É The prime p and generator g can be fixed for the
system, reducing the size of public keys. Then
exponentiation can be speeded up by
precomputation; however, so can the best-known
algorithm for calculating discrete logarithms, so a
larger modulus would be warranted.

É The security of ElGamal encryption and signing is
based on the intractability of the DHP for p. Several
other conditions are required.



ElGamal remarks
É ElGamal is an example of a randomized
encryption scheme, so no need to add salt. Security
relies in intractability of DHP. Choosing different r
for different messages is critical. Exercise: why?

É Efficiency:
É ciphertext twice as long as plaintext
É encryption requires two modular exponentiations,
which can be sped up by picking the random r with
some additional structure (with care).

É The prime p and generator g can be fixed for the
system, reducing the size of public keys. Then
exponentiation can be speeded up by
precomputation; however, so can the best-known
algorithm for calculating discrete logarithms, so a
larger modulus would be warranted.

É The security of ElGamal encryption and signing is
based on the intractability of the DHP for p. Several
other conditions are required.



ElGamal remarks
É ElGamal is an example of a randomized
encryption scheme, so no need to add salt. Security
relies in intractability of DHP. Choosing different r
for different messages is critical. Exercise: why?

É Efficiency:
É ciphertext twice as long as plaintext
É encryption requires two modular exponentiations,
which can be sped up by picking the random r with
some additional structure (with care).

É The prime p and generator g can be fixed for the
system, reducing the size of public keys. Then
exponentiation can be speeded up by
precomputation; however, so can the best-known
algorithm for calculating discrete logarithms, so a
larger modulus would be warranted.

É The security of ElGamal encryption and signing is
based on the intractability of the DHP for p. Several
other conditions are required.



Outline

Background

RSA

Diffie-Hellman

ElGamal

Summary



Summary: Current Public Key algorithms

É RSA, ElGamal already described.
É Elliptic curve schemes. Use ElGamal techniques.
Have shorter keys for same amount of security.

É Rabin encryption. Based on SQRROOT problem.
É Probabilistic schemes, which achieve provable
security based on Random Oracle Method (ROM)
arguments.

É Cramer-Shoup. Extends ElGamal with use of hash
functions in critical places to provide provable
security without ROM. Less efficient than ElGamal:
slower and ciphertext twice as long.



References

Alfred J. Menezes, Paul C. Van Oorschot, and Scott A.
Vanstone, editors. Handbook of Applied
Cryptography.
CRC Press Series on Discrete Mathematics and Its
Applications. CRC Press, 1997.
Online version at
http://www.cacr.math.uwaterloo.ca/hac.

Nigel Smart. Cryptography: An Introduction.
McGraw-Hill, 2003. Third edition online: http:
//www.cs.bris.ac.uk/~nigel/Crypto_Book/

Recommended Reading

Chapter 11, 12, 13 of Smart (3rd Ed).

http://www.cacr.math.uwaterloo.ca/hac
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

	Outline
	Background
	RSA
	Diffie-Hellman
	ElGamal
	Summary

