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History

É Asymmetric or public-key cryptography
É Originally attributed to Diffie and Hellman in 1975,
but later discovered in British classified work of
James Ellis in 1971

É Basic idea involves altering traditional symmetry of
cryptographic protocols to convey additional info in
a public key. The message sender uses this public
key to convey a secret message to the receipient,
without requiring a secure channel to share key
information.

É Traditionally presented as a means of encrypting
messages. In practice today, public key algorithms
are used to exchange symmetric keys
É Public keys are key encrypting keys
É Symmetric keys are data encryptingn keys

É Public keys also used to provide integrity through
digital signatures (later lecture)



Prime numbers
É A natural number p ≥ 2 is prime if 1 and p are its
only positive divisors.

É For x ≥ 17, then π(x), the number of primes less
than or equal to x, is approximated by:

x
lnx < π(x) < 1.25506 x

lnx

Fundamental theorem of arithmetic
Every natural number n ≥ 2 has a unique factorization
as a product of prime powers: pe11 · · ·penn for distinct
primes pi and positive ei.
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Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).

É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).

É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).

É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).
É For prime n, ϕ(n) = n− 1

É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).
É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).
É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).
É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.

É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Relative primes

É Two integers a and b are relatively prime if
gcd(a,b) = 1, i.e., a and b have no common factors.

É The Euler totient function ϕ(n) is the number of
elements of {1, . . . ,n} relatively prime to n.

É Given the factorisation of n, it’s easy to compute
ϕ(n).
É For prime n, ϕ(n) = n− 1
É For distinct primes p,q, ϕ(pq) = (p− 1)(q− 1).

É An integer n is said to be B-smooth wrt a positive
bound B, if all its prime factors are ≤ B.
É There are efficient algorithms that find prime factors
p of a composite integer n for which p− 1 is smooth.



Integers modulo n: Zn and Z∗
n

É Let n be a positive integer. The set

Zn = {0, . . . ,n− 1}

contains (equivalence classes of) integers mod n.

É Let a ∈ Zn. The multiplicative inverse of a
modulo n is the unique x ∈ Zn such that

ax ≡ 1 (mod n).

Such an x exists iff gcd(a,n) = 1.
É We can define a multiplicative group Z∗

n by

Z∗
n = {a ∈ Zn | gcd(a,n) = 1}.

É Facts:

É Z∗
n is closed under multiplication

É |Z∗
n | = ϕ(n)

É For prime n, Z∗
n = {1, . . . ,n− 1}.
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Properties of integers in Z∗
n

Fermat’s little theorem

If p is prime and gcd(a,p) = 1, then ap−1 ≡ 1 (mod p).

Euler’s theorem

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

É Fermat’s little theorem is used in several places,
e.g. a simple probabilistic primality test:

É repeatedly test ap−1 mod p for random a
É Miller-Rabin improves this (Carmichael numbers fail)

É Euler’s theorem allows reduction of large powers.

É 579 mod 6 = (52 ∗ 52)19 ∗ 53 = 119 ∗ 125 mod 6 = 5
É Generally: if x ≡ y (mod ϕ(n)), then ax ≡ ay (mod n).
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Cyclic groups

É Let a ∈ Z∗
n .

The order of a is the least t > 0 st at ≡ 1 (mod n).

É If g ≥ 2 has order ϕ(n), then Z∗
n is cyclic and g is a

generator (aka primitive root) of Z∗
n .

É Z∗
n is cyclic iff n = 2,4,pk,2pk for odd primes p.

É The discrete logarithm of b wrt g is the x st
gx ≡ b (mod n).

É There is an efficient algorithm for computing
discrete logs in Z∗

p if p− 1 has smooth factors.
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Example: Z∗
5

É Here is the multiplication table for Z∗
5 , showing xy

(mod 5).
1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

É |Z∗
5 |= ϕ(5) = 4

É Inverses: 2−1 = 3, 3−1= 2, 4−1 = 4.
É Notice 24 = 2∗ 2∗ 2∗ 2 = 1, also 34 = 44 = 1.
É Generators are: 2, 3, 4.
É In Z∗

5 , the discrete log of 4 for base 3 is 2
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Example: Z∗
15

É Here is the multiplication table for Z∗
15, showing xy

(mod 15).

1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14
2 2 4 8 14 1 7 11 13
4 4 8 1 13 2 14 7 11
7 7 14 13 4 11 2 1 8
8 8 1 2 11 4 13 14 7
11 11 7 14 2 13 1 8 4
13 13 11 7 1 14 8 4 2
14 14 13 11 8 7 4 2 1

É |Z∗
15| = ϕ(15) = (3− 1)∗ (5− 1) = 8.

É This group is not cyclic.
Exercise: find orders of each element.
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RSA
É A key-pair is based on product of two large, distinct,
random secret primes, n=pq with p and q roughly
the same size, together with a random integer e
with 1 < e < ϕ and gcd(e, ϕ) = 1, where

ϕ = ϕ(n) = (p− 1)(q− 1).
Public key is (n,e) and n is called the modulus.

É Private key is d, unique s.t. ed ≡ 1 (mod ϕ).
É Message and cipher spaceM = C = {0, . . . ,n− 1}.
É Encryption is exponentiation with public key e.
Decryption is exponentiation with private key d.

E(n,e)(m) = me mod n
Dd(c) = cd mod n

É Decryption works, since for some k, ed = 1+ kϕ and

(me)d ≡med ≡m1+kϕ ≡mmkϕ ≡m (mod n)

using Fermat’s theorem. (Exercise: fill details in).
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RSA remarks
É Recall that RSA is an example of a reversible
public-key encryption scheme. This is because e
and d are symmetric in the definition. RSA digital
signatures make use of this.

É RSA is often used with randomization (e.g., salting
with random appendix) to prevent chosen-plaintext
and other attacks.

É It’s the most popular and cryptanalysed public-key
algorithm. Largest modulus factored in the (now
defunct) RSA challenge is 768 bits (232 digits),
factored using the Number Field Sieve (NFS) on 12
December 2009.

É It took the equivalent of 2000 years of computing on
a single core 2.2GHz AMD Opteron. On the order of
267 instructions were carried out.

É Factoring a 1024 bit modulus would take about 1000
times more work (and would be achievable in less
than 5 years from now).

http://www.rsasecurity.com/rsalabs/
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RSA Remarks . . .

É In practice, RSA is used to encrypt symmetric keys,
not messages

É Like most public key algorithms, the RSA key size is
larger, and the computations are more expensive
(compared to AES, for example)

É This is believed to be a necessary result of the key
being publicly available

É With regard to attack complexity based upon an
n-bit key
É A worst-case attack algorithm on a symmetric
cipher would take O(2n) work (exponential).

É A worst-case attack algorithm for RSA is dependent
upon the complexity of factoring, and thus would
take O(eo(n)) (sub-exponential)



Cryptographic Reference Problems I

FACTORING Integer factorization. Given positive n, find
its prime factorization, i.e., distinct pi such that
n = pe11 · · ·penn for some ei ≥ 1.

SQRROOT Given a such that a ≡ x2 (mod n), find x.
RSAP RSA inversion. Given n such that n = pq for

some odd primes p 6= q, and e such that
gcd(e, (p− 1), (q− 1)) = 1, and c, find m such
that me ≡ c (mod n).

Note: SQRROOT=P FACTORING and RSAP≤P FACTORING

É A ≤P B means there is a polynomial time (efficient)
reduction from problem A to problem B.

É A =P B means A ≤P B and B ≤P A
É So: RSAP is no harder than FACTORING.
Is it easier? An open question.
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Cryptographic Reference Problems II

DLP Discrete logarithm problem. Given prime p, a
generator g of Z∗

p , and an element a ∈ Z∗
p , find the

integer x, with 0 ≤ x ≤ p− 2 such that gx ≡ a
(mod p).

DHP Diffie-Hellman problem. Given prime p, a generator
g of Z∗

p , and elements ga mod p and gb mod p, find

gab mod p.

Note: DHP≤PDLP.
In some cases, DHP=PDLP.
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Diffie-Hellman key agreement

É Diffie-Hellman key agreement allows two principals
to agree a shared key without authentication. Initial
setup: choose and publish a large “secure” prime p
and generator g of Z∗

p .

Message 1. A→ B: gx mod p
Message 2. B→ A: gy mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É B receives gx, computes shared key K = (gx)y mod p.
É A receives gy, computes shared key K = (gy)x mod p.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
Exercise: try some artificial examples with p = 11,
g = 2. Show a MITM attack against the protocol.
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Shamir’s ‘No Key’ Key Transfer
É Shamir’s ‘No Key’ algorithm captures our earlier
class demonstration, similar to Diffie-Hellman.
Initial setup: choose and publish a large “secure”
prime p and generator g of Z∗

p .

Message 1. A→ B: Kx mod p
Message 2. B→ A: Kxy mod p
Message 3. A→ B: Ky mod p

É A chooses random z, 1 ≤ z < p− 1, and computes
the symmetric key K = gz mod p

É A chooses random x, 1 ≤ x < p− 1, sends msg 1.
É B chooses random y, 1 ≤ y < p− 1, sends msg 2.
É A computes x−1 mod p− 1, sends msg 3.
É B receives Ky mod p, computes y−1 mod p− 1 and
recovers key K.

É Security rests on intractability of DHP for p and g.
Protocol is safe against passive adversaries, but not
active ones.
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ElGamal encryption
É A key-pair is based on a large random prime p and
generator g of Z∗

p , and a random integer d. Public

key: (p,g,gd mod p), private key: d.

É The message spaceM = {0, . . . ,p− 1}, and the
encryption operation is given by selecting a random
integer r and computing a pair:

E(p,g,gd)(m) = (e,c) where e = gr mod p
c =m(gd)r mod p.

É Decryption takes an element of ciphertext
C =M×M, and computes:

Dd(e,c) = e−d cmod p where e−d = ep−1−d mod p.

É Decryption works because e−d = g−dr, so

Dd(e,c) ≡ g−drmgdr ≡ m (mod p).

É This is like using Diffie-Hellman to agree a key gdr

and encrypting m by multiplication.
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Dd(e,c) ≡ g−drmgdr ≡ m (mod p).

É This is like using Diffie-Hellman to agree a key gdr

and encrypting m by multiplication.



ElGamal remarks
É ElGamal is an example of a randomized
encryption scheme, so no need to add salt. Security
relies in intractability of DHP. Choosing different r
for different messages is critical. Exercise: why?

É Efficiency:

É ciphertext twice as long as plaintext
É encryption requires two modular exponentiations,
which can be sped up by picking the random r with
some additional structure (with care).

É The prime p and generator g can be fixed for the
system, reducing the size of public keys. Then
exponentiation can be speeded up by
precomputation; however, so can the best-known
algorithm for calculating discrete logarithms, so a
larger modulus would be warranted.

É The security of ElGamal encryption and signing is
based on the intractability of the DHP for p. Several
other conditions are required.
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Summary: Current Public Key algorithms

É RSA, ElGamal already described.
É Elliptic curve schemes. Use ElGamal techniques.
Have shorter keys for same amount of security.

É Rabin encryption. Based on SQRROOT problem.
É Probabilistic schemes, which achieve provable
security based on Random Oracle Method (ROM)
arguments.

É Cramer-Shoup. Extends ElGamal with use of hash
functions in critical places to provide provable
security without ROM. Less efficient than ElGamal:
slower and ciphertext twice as long.
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