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Cipher design and cipher breaking were once arts
secret themselves. In the last few decades, public
science has gained ground. (We think.)
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Integrity check functions

• Recall that MDCs (modification detection codes) are either of two
varieties of hash function:

— OWHF: one-way and 2nd pre-image (weak collision) resitance;

— CRHF: 2nd pre-image resitance and (strong) collision resistance.

• To satisfy (strong) collision resistance, a hash function has to be
large enough to withstand a birthday attack (or square root attack).
Drawing random elements with replacement from a set of n elements,
a repeated element is likely to be found after O(

√
n) selections.

• Mallory has two contracts, one for €1000, the other €100,000, to be
signed with a 64-bit hash. He makes 232 minor variations in each
(changing spaces or control characters), and finds a pair with the same
hash. He can later claim second document was signed, not first.

• An n-bit unkeyed hash function has ideal security if producing a
pre-image or 2nd-pre-image each requires O(2n) operations, and
producing a collision requires O(2n/2) operations.
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From one-way functions to MDCs

• Multiplication of large primes is a OWF; for appropriate choices of p
and q, f(p, q) = pq is a one-way function since integer factorization is
difficult. Not feasible to turn into an MD function, though (Ex: why?)

• Exponentiation in finite fields (see later) is a OWF; for appropriate
primes p and numbers α, f(x) = αx mod p is a one-way function,
since the discrete logarithm problem is difficult. (However, it’s easy
for some values such as 1, -1). Main problem with turning this into a
realistic MD function is that it’s too slow to calculate.

• We can construct a OWF from a block cipher such as DES, which is
treated essentially as a random function:

h(x) = Ek(x)⊕ x

for fixed key k. This can be turned into a MD function, by iteration. . .
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Building up hash functions

• An iterated hash function is constructed using a compression function
f which converts a t + n-bit input into an n-bit output. The input x
is split into blocks x1 x2, . . . xk of size t + n, typically by appending
padding bits and a length block indicating the original length.

H0 = IV Hi = f(Hi−1, xi), 1 ≤ i ≤ k h(x) = g(Hk).

IV: an initialization vector; g: an output transformation (often identity).

• Fact (Merkle’s meta-method): any collision-resistant compression
function f can be extended to a collision-resistant hash function by
the above construction, by padding the last block with 0s, and adding
a final extra block xk which holds right-justified binary representation
of length(x) (this padding technique is called MD strengthening). Set
IV = 0n, g = id, and compute Hi = f(Hi−1, xi).
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Outline of MD5

• An improved version of MD4. Both designed by Ron Rivest. Text
processed in 512-bit blocks, as 16 32-bit sub-blocks. Output is four
32-bit blocks, giving a 128-bit hash. Message is padded with a 1 and
then 0s to 64 bits short of 512*n, then a 64-bit length representation.

• Main loop has four rounds, chaining 4 variables a,b, c, d. Each round
uses a different operation (with a similar structure) 16 times, which
computes a new value of one of the four variables using a non-linear
function of the other three, chosen to preserve randomness properties
of the input. For example, the first round uses the operation:

a = (F(b, c, d)+ xi + tj) <<< s
F(b, c, d) = (b ∧ c)∨ (¬b ∧ d)

where <<< s is left-circular shift of s bits, xi is the ith sub-block of
the message. Constants tj are the integer part of 232 ∗ abs(sin(i+ 1))
where 0 ≤ i ≤ 63 is in radians (for the 4 * 16 steps).
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SHA-1

• Secure Hash Algorithm (rev 1) is a NIST standard [FIPS 180] also based
on MD4. Five 32-bit blocks are chained; output is 160 bits. Message
blocks 512 bits. Padding like MD5. Words are stored in big-endian.

• Main loop has four rounds of 20 operations, chaining 5 variables
a,b, c, d, e, f . Five IVs and four constants are used:

A = 0x67452301

B = 0xEFCDAB89

C = 0x98BADCFE

D = 0x10325476

E = 0xC3D2E1F0

K0 = 0x5A827999

K1 = 0x6ED9EBA1

K2 = 0x8F1BBCDC

K3 = 0xCA62C1D6

• The message block undergoes an expansion transformation from
16*32-bit words xi to 80*32-bit words, wi by:
wi = xi, for 0 ≤ i ≤ 15.
wi = (wi−3 ⊕wi−8 ⊕wi−14 ⊕wi−16) <<< 1, for 16 ≤ i ≤ 79.
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• Each operation uses a non-linear function of three of the 5 variables:
F0(X, Y , Z) = (X ∧ Y)∨ (¬X ∧ Z)
F1(X, Y , Z) = X ⊕ Y ⊕ Z
F2(X, Y , Z) = (X ∧ Y)∨ (X ∧ Z)∨ (Y ∧ Z)
F3(X, Y , Z) = X ⊕ Y ⊕ Z

• Compression function executes this loop, where j = i/20:

for( i = 0; i < 80; i++ ) {
tmp = (a <<< 5)+ Fj(b, c, d)+ e+wi +Kj ;
e = d;
c = b <<< 30;
b = a;
a = tmp;

}
• Finally the variables a,b, c, d, e are added to the previous intermediate

value (all addition is modulo 232). Exercise: implement SHA-1 in
your favourite language following this. A 3-letter test: abc hashes to
84983e441c3bd26ebaae4aa1f95129e5e54670f1. – 8 –



Block ciphers from hash functions

• We can also construct ciphers from hash functions. To use a hash-
function as block cipher in CFB mode: concatentate plaintext block
with key and previous ciphertext block (|| means concatenation):

Ci = Pi ⊕ h(K||Ci−1) Pi = Ci ⊕ h(K||Ci−1)

A similar construction using h in OFB mode is possible.

• The Message Digest Cipher construction is similar. It uses a function
which converts t bits to n bits and is normally seeded with an n-bit
IV. A t-bit key is used as the unchanging input:

Ci = Pi ⊕ h(Ci−1, K) Pi = Ci ⊕ h(Ci−1, K)

E.g., SHA would be used with a 512-bit key and 160-bit block size.

• The Luby-Rackoff construction uses three hash functions to make a
provably secure 3-round Feistel cipher.

• In general one should be wary of these constructions. . .
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The Random Oracle Model [BR93]

• A strategy for provable security. The technique is to “factor out” crypto
primitives, and consider them as being perfectly random:

— A public oracle R maps inputs into random (possibly unbounded)
output. Same input produces same output.

— R models a hash f’n, encryption f’n, or random number generator.
— Then make assumptions on limits to access of the oracle (e.g.,

a polynomially-bounded adversary), and prove results about a
particular usage (e.g., secure against feasible chosen-text attacks).

— In the real implementation,R is replaced by algorithms (e.g. based
on DES, MD5, etc). Hope is that the result is still somehow pertinent
(an achievable best case) for this setting.

• Used to justify practical constructions in modern cryptography, e.g.,
RSA-style signature scheme, constructions similar to previous slide.

• But: step of “realizing”R is risky; ROM hypothesis is shaky.
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Keyed hash functions (MACs)

• Recall that a MAC is a family of hash functions {hk | k ∈ K}
parameterised by secret keys k ∈ K. Each function hk must satisfy a
particular security requirement (which implies non recovery for k):

— MAC resistance. For any fixed secret value of k, given a set of pairs
(xi, hk(xi)), it is computationally infeasible to compute hk(x) for
any new input x (including colliding x st ∃i. hk(x) = hk(xi)).

• Common MAC algorithm: a block-cipher in CBC mode.

• A MAC algorithm can be derived from an MDC algorithm using the
hashed MAC (HMAC) construction. Given an MDC algorithm h, for
any given key k and message x compute

HMACk(x) = h(k ||p1||h(k ||p2 ||x) )

where p1 and p2 are padding which extend k to a full block length of the
compression function used in h. More obvious simpler constructions
than this (e.g., h(k||x), h(x||k) ) are subject to various attacks.
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Hash functions compared

• SHA and MD5 both improved on MD4 by adding an extra round and
increasing the avalanche effect: how quickly the effect of the input bits
spreads in the output. SHA also adds the expand transformation to
MD4, so any two different 16-word messages differ give two 80-word
values which differ in many bit positions.

• There has been some cryptanalysis of MD5, and collisions have been
found for the MD5 compression function, although not for the full hash
function itself.

• Someone using a birthday attack on MD5 will have to hash 264 random
documents to find two that hash to the same value. This is too small
a number for long-term security, so 160-bits or greater should be used
for long-lived signatures.
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Prime number reminders

• A natural number p ≥ 2 is prime if 1 and p are its only positive divisors.
Two integers a and b are relatively prime if gcd(a, b) = 1.

• For x ≥ 17, then φ(x), the number of primes less than or equal to x, is
approximated by:

x
lnx

< φ(x) < 1.25506
x

lnx

• Fundamental theorem of arithmetic: every natural n ≥ 2 has a unique
factorization as a product of prime powers: pe1

1 · · ·p
en
n for distinct

primes pi and postive ei.

• The Euler totient function φ(n) is the number of elements of {1, . . . , n}
which are relatively prime to n. For prime n, φ(n) = n− 1.

• An integer n is said to be B-smooth wrt a positive bound B, if all its
prime factors are ≤ B. There are efficient algorithms for computing any
prime factors p of a compositive integer n for which p − 1 is smooth.
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Zn, the integers modulo n

• Let n be a positive integer. Then Zn = {0, . . . , n−1}, the set of integers
modulo n (more properly, the equivalence classes [x]n modulo n).

• Let a ∈ Zn. The multiplicative inverse of a modulo n is the unique
x ∈ Zn such that ax ≡ 1 (mod n). Fact: a exists iff gcd(a,n) = 1.

• The multiplicative group Z∗n = {a ∈ Zn | gcd(a,n) = 1}. Fact: Z∗n is
closed under multiplication, and |Z∗n| = φ(n).

• Euler’s theorem: if a ∈ Z∗n, then aφ(n) ≡ 1 (mod n). If n is a product
of distinct primes, and if r ≡ s (mod φ(n)), then ar ≡ as (mod n).
Fermat’s theorem: if p prime, gcd(a,p) = 1, then ap−1 ≡ 1 (mod n).

• Let a ∈ Z∗n . The order of a is the least t > 0 st at ≡ 1 (mod n). If an
element α ∈ Z∗n has order φ(n), then Z∗n is cyclic and α is a generator
(primitive root) of Z∗n. Fact: Z∗n is cyclic iff n = 2,4, pk,2pk for prime p.

• There is an efficient algorithm for computing discrete logs in Z∗p if p−1
has smooth factors.
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Cryptographic Reference Problems

FACTORING Integer factorization. Given positive n, find its prime
factorization, i.e., distint pi such that n = pe1

1 · · ·p
en
n for some ei ≥ 1.

RSAP RSA inversion. Given n such that n = pq for some odd primes
p ≠ q, and e such that gcd(e, (p − 1), (q − 1)) = 1, and c, findm such
thatme ≡ c (mod n).

DLP Discrete logarithm problem. Given prime p, a generator α of Z∗p , and
an element β ∈ Z∗p , find the integer x, with 0 ≤ x ≤ p − 2 such that
αx ≡ β (mod p).

DHP Diffie-Hellman problem. Given prime p, a generator α of Z∗p , and
elements αa mod p and αb mod p, find αab mod p.

Relationships: RSAP≤PFACTORING, DHP≤PDLP, where ≤P means there is
a polytime reduction from first prob to second (first no harder than second).
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RSA

• A key-pair is based on product of two large, distinct, random secret
primes, n = pq with p and q roughly the same size, together with
a random integer e with 1 < e < φ and gcd(e,φ) = 1, where
φ = φ(n) = (p − 1)(q − 1). Public key is (n, e) and n is the modulus.

• Private key is d, the unique integer such that ed ≡ 1 (mod φ).

• Message and cipher space M = C = {0, . . . , n − 1}. Encryption is
exponentiation with public key e, decryption is exponentiation with
private key d.

E(n,e)(m) = me mod n

Dd(c) = cd mod n

• Decryption works because, for some k, ed = 1+ kφ and

(me)d ≡med ≡m1+kφ ≡mmkφ ≡m (mod n)

using Fermat’s theorem. (Exercise: fill in the details of the proof).
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RSA notes

• RSA is an example of a reversible public-key encryption scheme. It’s
reversible because e and d are symmetric in the definition. RSA digital
signatures are defined using this fact (see Cryptography I lecture).

• RSA is often used with randomization (e.g., salting with a random
appendix) to prevent chosen-plaintext and other attacks.

• Most popular and cryptanalyzed public-key algorithm. Largest
modulus factored in RSA challlenge was 155 bits in 1999, which took
8000 MIPS years on a variety of machines. This has been repeated
since with less effort, so a 512-bit RSA modulus is not nowadays
regarded as secure enough. It’s believed that a 1024-bit number will
need an advance in mathematics, however.

• To win $10,000, factor RSA 576: 188198812920607963838697239461650439807163
563379417382700763356422988859715234665485319060606504743045317388011
303396716199692321205734031879550656996221305168759307650257059.
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Diffie-Hellman key agreement

• Diffie-Hellman key agreement allows two principles to agree on a
key without authentication. Initial setup: choose and publish a large
“secure” prime p and generator α of Z∗p .

Message 1. A→ B: αx mod p

Message 2. B → A: αy mod p

— A chooses random secret x, 1 ≤ x ≤ p − 2, and sends message 1.

— B chooses random secret y , 1 ≤ y ≤ p − 2, and sends message 2.

— B receives αx and computes shared key as K = (αx)y mod p.

— A receives αy and computes shared key as K = (αy)x mod p.

• Security rests on intractability of DHP for p and α. Protocol is safe
against passive adversaries, but not active ones.
Exercise: try some artificial examples with p = 11, α = 2. Show a MIM
attack against the protocol.
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ElGamal encryption

• A key-pair is based on a large random prime p and generator α of Z∗p ,
and a random integer d. Public key: (p,α,αd mod p), private key: d.

• The message spaceM = {0, . . . , p − 1}, and the encryption operation
is given by selecting a random integer r and computing a pair:

E(p,α,αd)(m) = (γ, δ) where γ = αr mod p

δ =m á (αd)r mod p.

• Decryption takes an element of ciphertext C =M×M, and computes:

Dd(γ, δ) = γ−d á δ mod p where γ−d = γp−1−d mod p.

• Decryption works because γ−d = α−dr , so

Dd(γ, δ) ≡ α−drmαdr ≡ m (mod p).

• This is just like using Diffie-Hellman to exchange a session key αdr

and then encryptingm by multiplying it with the session key.

– 19 –



ElGamal signatures

• Same setup as encryption: p is an appropriate prime, α a generator
of Z∗p , and d a random integer with 1 ≤ d ≤ p − 2, which is the
private signing key. The corresponding public verification key is
(p,α,αd mod p).

• To sign a message m, 0 ≤m ≤ p, the user picks a random number r
with 1 ≤ r ≤ p − 2 and gcd(r , p − 1) = 1, and computes:

Sd(m) = (γ, δ) where γ = αr mod p

d á γ + r á δ ≡m (mod p − 1).

• The verification function checks that 0 < γ < p, and an equation:

V(p,α,αd)(m, (γ, δ)) =
{

true if (αd)γ á γδ ≡ αm (mod p),
false otherwise.

• Verification works because for a correct signature,

(αd)
γ
á γδ ≡ αdγ+rδ ≡ αm (mod p).
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From ElGamal to DSA

• The Digital Signature Algorithm is part of the Digitial Signature
Standard NIST standard [FIPS 186] which is based on the ElGamal
signature scheme, but with improved efficiency. It was the first digital
signature scheme to be recognized by any government.

• Based on two primes: p, which is 512–1024 bits long, and q, which is
a 160-bit prime factor of p − 1. A signature signs a SHA-1 hash value
of a message. (In fact, ElGamal signing ought also to be used with
a hash function, to prevent existential forgery attacks as outlined in
Cryptography I). For more details of DSA, see e.g., [Gol99].

• Security of both ElGamal and DSA schemes relies on the intractibility
of the DLP.

• Comparison with RSA signature scheme: key generation is faster;
signature generation is about the same; DSA verification is slower.
Verification is the most common operation in general.

– 21 –

http://www.informatics.ed.ac.uk/teaching/modules/cs/lecs/cryptoI.pdf
http://www.itl.nist.gov/fipspubs/fip186.htm


Notes about ElGamal

• ElGamal is an example of a randomized encryption scheme, so no
need to add salt. Security relies in intractability of DHP. Choosing
different r for different messages is critical. Exercise: why?

• Efficiency: ciphertext is twice as long as the plaintext. Encryption
requires two modular exponentiations, which can be sped up by
picking the random r with some additional structure (with care).

• The prime p and generator α can be fixed for the system, reducing
the size of public keys. Then exponentiation can be speeded up
by precomputation; however, so can the best-known algorithm
for calculating discrete logarithms, so a larger modulus would be
warranted.

• The security of ElGamal encryption and signing is based on the
intractability of the DHP for p. Several other conditions are required,
for example, to avoid weak generators and feasible attack by the
Pohlig-Hellman algorithm for computing discrete logarithms.
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Current hash and PK algorithms

Hash functions • MD5, SHA-1 already described.

• RIPEMD-160 is based on MD4, developed after analysing RIPEMD,
MD4, and MD5. Uses two side-by-side runs of compression function,
combining two 160-bit blocks. Security similar to SHA-1.

• SHA256 and SHA512 are NIST proposals for longer hash functions, to
provide better than 280 work factor.

Public key schemes • RSA, ElGamal already described.

• Elliptic curve schemes. Use ElGamal techniques. Shorter keys.
• Probablistic schemes, which achieve provable security.

Digital signatures • RSA, ElGamal, DSA already described.

• Several variants of ElGamal, including schemes with message-recovery.
• Schemes for one-time signatures (e.g., Rabin, Merkle) require a

fresh public key for each use. Typically much more efficient than
RSA/ElGamal methods.
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