
Computer Programming: Skills & Concepts
(INF-1-CP1)

The C Programming Language: 2

28th September, 2010

CP1–4 – slide 1 – 28th September, 2010

Tutorials

I Start in week 3 (next week!)

I Tutorial groups can be viewed from the appropriate webpage:
https://www.inf.ed.ac.uk/admin/itodb/mgroups/stus/cp1.html

I Contact the ITO if your tutorial group clashes with another lecture,
or if you have not been assigned to any group (and are officially
registered for CP1).

CP1–4 – slide 2 – 28th September, 2010

Summary of Lecture 3

I Edit → Compile → Run cycle.

I “Hello World” example.

I Mistakes.

CP1–4 – slide 3 – 28th September, 2010

printf

I To output text to the screen: (\n means ‘newline’):
printf("This text will be output\n");

I To write out a variable:
printf("The number is %d \n",number);

%d is a placeholder meaning “print the next argument here”
% introduces placeholders, d means “print an integer in decimal”

I To write several numbers, use several placeholders in order:
printf("x is %d, and y is %d\n", x, y);

CP1–4 – slide 4 – 28th September, 2010

Overview

I Maths in C.

I Basic numeric types: double and int.

I Numeric variables.

I Common problems.

CP1–4 – slide 5 – 28th September, 2010

Today’s problem

Convert pre-decimal British money to decimal

We know:
I The number of old pence in a shilling (12) and old pence in a pound

(240).

I The number of new pence in a pound (100).

How to compute £4 7/8 in decimal?

Always do financial arithmetic with integers!

CP1–4 – slide 6 – 28th September, 2010

C program

#include <stdio.h>

#include <stdlib.h>

const int OLD_PENCE_PER_SHILLING = 12;

const int OLD_PENCE_PER_POUND = 240;

const int NEW_PENCE_PER_POUND = 100;

int main(void) {

int pounds, shillings, oldpence, newpence;

pounds = 4; shillings = 7; oldpence = 8;

oldpence = oldpence + shillings * OLD_PENCE_PER_SHILLING;

newpence = (oldpence * NEW_PENCE_PER_POUND) / OLD_PENCE_PER_POUND;

printf("%d %d/%d in old money ", pounds, shillings, oldpence);

printf("is %d.%d in new money.\n", pounds, newpence);

return EXIT_SUCCESS;

}

CP1–4 – slide 7 – 28th September, 2010

Integer arithmetic in C

Why did we write

newpence = (oldpence * NEW_PENCE_PER_POUND) / OLD_PENCE_PER_POUND;

instead of

newpence = oldpence * (NEW_PENCE_PER_POUND / OLD_PENCE_PER_POUND);

Integer arithmetic is all integer – no fractions!
(92 ∗ 100)/240 = 9200/240 = 38, but
92 ∗ (100/240) = 92 ∗ 0 = 0
Very common mistake – watch for it.

CP1–4 – slide 8 – 28th September, 2010

The int type in C

I An integer (whole number):
I for example, 1, 2,−16000, 0;

I 232 possible values {−231, . . . , 231 − 1}:
I Some types of computer are more limited;
I 231 = 2, 147, 483, 648.

I Fully accurate within this range;

I Often used in indexing and status codes;

I Print with printf("%d", integerVariable).
I Arithmetic operations:

I plus: 12 + 7 = 19
I minus: 12− 7 = 5
I times: 12 ∗ 7 = 84
I divides: 12 / 7 = 1 (integer division!)
I remainder: 12 % 7 = 5 (N.B. x = (x / y) ∗ y + (x % y) always.)

CP1–4 – slide 9 – 28th September, 2010

Precedence (of arithmetic operators)

oldpence = oldpence + shillings * OLD_PENCE_PER_SHILLING;

Means
oldpence = oldpence + (shillings * OLD_PENCE_PER_SHILLING);

Not
oldpence = (oldpence + shillings) * OLD_PENCE_PER_SHILLING;

Precedence-based evaluation

I Multiplication (*), division (/) and remainder (%) are evaluated
before addition (+) and subtraction (−).

I Use parentheses to force an evaluation order

I If in any doubt, USE PARENTHESES! or just use them all the time!

CP1–4 – slide 10 – 28th September, 2010

Variables in C

Variables are “boxes” to store a value

I Bit like variables in mathematics (may have varying assignments);

I A C variable holds a single value;

I Have to define what type of item a variable will hold, eg:
int x; or int x = 2;

I In C, the value can change over time as a result of program
statements which act on the variable, eg:
x = x + 1;

VITAL TO REMEMBER: In C, a single equals sign = always means
‘gets set to’; it never means ‘is equal to’. Beware when people are mixing
mathematical notation and C notation.
With gcc -Wall, the compiler will warn you any time it sees an = where
it thinks you probably meant ‘is equal to’ (==), but it’s not telepathic.

CP1–4 – slide 11 – 28th September, 2010

Updating Variables

int n; <-- n is declared as int

n = 2 * n; <-- n is doubled (from what? ERROR)
n = 9; <-- n gets the value 9
n = n + 1; <-- n gets the value 9+1, ie 10
n = 22 * n + 1; <-- n gets the value ?
++n; <-- n gets the value ?
n++; <-- n gets the value ?

CP1–4 – slide 12 – 28th September, 2010

Swapping Values

Aim: Swap the values of x and y

int x = 5;
int y = 10;

x = y;
y = x;

CP1–4 – slide 13 – 28th September, 2010

Swapping Values (Wrong)

Aim: Swap the values of x and y

int x = 5;
int y = 10;

x = y;
y = x;

CP1–4 – slide 14 – 28th September, 2010

Swapping Values (Correct)

int x = 5;
int y = 10;
int temp;

temp = x;
x = y;
y = temp;

We used an auxiliary variable (“box”) to temporarily store x

CP1–4 – slide 15 – 28th September, 2010

Variable Names (Identifiers)

I Can be a letter, underscore, or a digit

I BUT first character CANNOT be a digit!

I See section 2.2 and 2.5 of “A Book on C”

OK: EXIT SUCCESS, Celsius, t0, n.

Not OK: hyper-modern, J@inf, 4tet.

CP1–4 – slide 16 – 28th September, 2010

Identifiers in Practice

I Use meaningful names
I (maybe) follow some convention:

I FunctionNames
I variableNames
I CONSTANT VALUES

I The particular convention is not so important
. . . But one convention per program please!
If you’re modifying someone else’s program, follow their convention,
even if it’s silly.

CP1–4 – slide 17 – 28th September, 2010

C program again

#include <stdio.h>

#include <stdlib.h>

const int OLD_PENCE_PER_SHILLING = 12;

const int OLD_PENCE_PER_POUND = 240;

const int NEW_PENCE_PER_POUND = 100;

int main(void) {

int pounds, shillings, oldpence, newpence;

pounds = 4; shillings = 7; oldpence = 8;

oldpence = oldpence + shillings * OLD_PENCE_PER_SHILLING;

newpence = (oldpence * NEW_PENCE_PER_POUND) / OLD_PENCE_PER_POUND;

printf("%d %d/%d in old money ", pounds, shillings, oldpence);

printf("is %d.%d in new money.\n", pounds, newpence);

return EXIT_SUCCESS;

}

CP1–4 – slide 18 – 28th September, 2010

Type Modifiers: �const

const tells the compiler

“this variable should never change”

const int OLD_PENCE_PER_SHILLING = 12;

const variables must be assigned at declaration . . .
the = is mandatory

Why use const variables?

I To avoid mistakes typing the same number over and over.

I To make the program easier to read.

I Because some constants are not so constant . . .

CP1–4 – slide 19 – 28th September, 2010

Questions

CP1–4 – slide 20 – 28th September, 2010

