
Computer Programming: Skills & Concepts (CP1)
Programming Languages

22nd November 2010

CP1–27 – slide 1 – 22nd November 2010

Varieties of Programing Language

I Procedural/imperative (like C)
I Language consists of statements which act on the state space of

variables.
I Functions, procedures common.

I Functional Languages (eg Haskell, Lisp)
I Specify what is computed, but abstract away from how.
I The concept of an evolving state space (of program variables) is not

explicit.

I Object-Oriented Languages
I Focus is on the organisation and representation of the state space.

CP1–27 – slide 2 – 22nd November 2010

Fibonacci in Lisp

(defun fibonacci (n)
(if (or (= n 0) (= n 1))

1
(+ (fibonacci (- n 1)) (fibonacci (- n 2)))))

– defun- - define a function.

– In functional programming almost everything is a function, even at
basic level

– Notice in fibonacci (n) that we have no variables to store n-1 or
n-2. Instead we apply the function - to the arguments n and 1 (and
2 respectively)

CP1–27 – slide 3 – 22nd November 2010

Compilation versus Interpretation

C is usually a compiled language:

- Programming cycle is write/compile/run.

- Compiler generates code to run on the hardware of the machine.

- Fast, compact and efficient (once compiled).

Sometimes languages (especially functional) may be interpreted:

- The encoding into machine code is done on a step-by-step basis.

- Allows for dynamic creation of variables and data structures.

- Can be good for debugging.

- Slower execution, requires interpreter.

CP1–27 – slide 4 – 22nd November 2010



Imperative/procedural languages

C

- Need to be careful with array bounds (as we know!).

- Allows direct access to memory.

- Good for direct interfacing to hardware and writing device drivers.

- Pointers get you into trouble.

Fortran

- Bit old fashioned, but still used (good for numerical work).

- UK Met Office Unified Model - millions of lines of Fortran.

- Limited feature set - less to go wrong.

- Easy to make a fast compiler.

CP1–27 – slide 5 – 22nd November 2010

Features of Fortran

- No explicit pointers (special case in F90)
I Easier to automatically optimise code.

- Very stable numerical libraries available.

- In F77, no dynamic storage allocation.

- Cannot do recursion (but can in F90).

- All variables passed by reference.
I Faster than by value.

- Variable dimension array arguments to functions.
I Required by many numerical algorithms.

- Built-in complex numbers.

CP1–27 – slide 6 – 22nd November 2010

Functional languages

What are they?

Emphasis is the evaluation of expressions, rather than the
execution of commands - comp.lang.functional

I Important in theoretical computer science, not used so often in
practice.

I Haskell is perhaps the most popular functional language.

CP1–27 – slide 7 – 22nd November 2010

Sum integers from 1-10

C

total = 0;
for (i=1; i<=10; ++i)

total += i;

Functional language.

sum [1..10]

I sum is a function to compute the sum of a list of values.

I [1..10] is an expression representing the list containing the
numbers from 1 to 10

CP1–27 – slide 8 – 22nd November 2010



Object-Oriented Languages

CP1–27 – slide 9 – 22nd November 2010

reminder: struct in C

typedef struct {
float re, im;

} Complex_t;

Complex_t ComplexSum(Complex_t z1, Complex_t z2)
/* Returns the sum of z1 and z2 */
{

Complex_t z;
z.re = z1.re + z2.re;
z.im = z1.im + z2.im;
return z;

}

CP1–27 – slide 10 – 22nd November 2010

Used in practice

int main(void)
{

Complex_t z, z1, z2, z3, z4;
z1 = MakeComplex(1.0, -5.0);
z2 = MakeComplex(3.0, 2.0);
z3 = MakeComplex(2.0, -7.0);
z4 = ComplexMultiply(z1, z2);
z = ComplexSum(z4,z3);

printf("The modulus of z is %f\n", Modulus(z));
return EXIT_SUCCESS;

}

Evaluating the expression z = (z1*z2) + z3.

CP1–27 – slide 11 – 22nd November 2010

C++ and objects

C groups similar data into a struct:

- Functions which operate on those data are separate from the data
itself.

C++ groups the functions operating on some struct type:

- C++ calls these classes.

- An instance of a class is called an object.

- The ‘functions’ don’t exist until the object is created.

Complex c1,c2,c3 ;
c3 = c1.multiply(c2);

CP1–27 – slide 12 – 22nd November 2010



Operator overloading

C++ allows re-definition of standard operators

- eg Complex number multiplication with *.

- Also could define * for matrices etc

Complex c1,c2,c3 ;
c4 = c1 * c2 + c3;

CP1–27 – slide 13 – 22nd November 2010

Common OO Languages

C++

- Extension to the C language.

- Has objects, but also still C pointers and memory access.

- Compiles directly on the machine, like C.

Java

- Cleaner than C++ - no pointers.

- ‘Compiles’ onto a virtual machine.

- Portable across platforms - and web applets.

- Slower than C++ - and less efficient.

CP1–27 – slide 14 – 22nd November 2010

Inheritance

I Can define generic classes with general properties.

I Then subclasses can be derived from this base class.

I For example generic class (in C++) for a vehicle:

char colour[50] ;
int numWheels ;
int start() ;
int stop() ;

I Derived class for a car:
char typeOfFuel ;

CP1–27 – slide 15 – 22nd November 2010

Object-Oriented design

I What are classes? - sometimes obvious - complex numbers.
I Some tasks fit the model very well.

I Graphics, ‘pipelined’ processes.

I Sometimes difficult to see where the objects are in a design.
I Some tasks are just a sequence of functions.

CP1–27 – slide 16 – 22nd November 2010



Common Data Structures

Queue - a dynamic list of items

I first-in is first-out.

Stack - first-in, last-out.

Both these structures have implementations with faster access than arrays
(because no need for random access).

CP1–27 – slide 17 – 22nd November 2010

Implementing a Queue

You are implementing a queue for an accounting system.
You implement a queue for customer records.
Now you need a queue for messages too?

You have to re-write the queue to work with the new ‘message’ type?

CP1–27 – slide 18 – 22nd November 2010

C++ templates

I Way of writing objects (eg data structures) that is independent of
the type that it works with.

I Write a generic queue template with a type parameter T.
I T can be replaced with any data type.
I (eg) Our queue can be used with any data type.

I Change details of template ⇒ all queues automatically change.
I Very useful for common operations.

I lists, sorting, searching, queues etc.

I Useful set of templates provided in the Standard template library.

CP1–27 – slide 19 – 22nd November 2010

Examples: vectors in C++ (using arrays)

void f(int a[], int s) {
/* do something with a; the size of a is s */

for (int i = 0; i<s; ++i)
a[i] = i;

}

int arr1[20];
int arr2[10];

void g() {
f(arr1,20);
f(arr2,20); /* CRASH !! */

}

CP1–27 – slide 20 – 22nd November 2010



Using arrays

#define S 10;

void f(int s) {
int a1[s]; /* error */
int a2[S]; /* ok */
/* Arrays have to be declared at compile time.
* ...

}

CP1–27 – slide 21 – 22nd November 2010

C++ vectors

const int S = 10;
void g(int s) {

vector<int> v1(s); /* ok */
vector<int> v2(S); /* ok */

v2.resize(v2.size()*2);
/* Can resize arrays during runtime. */

}

CP1–27 – slide 22 – 22nd November 2010

Vector template

void f(vector<int>& v) {
/* do something with v */
for (int i = 0; i<v.size(); ++i)

v[i] = i;
}

vector<int> v1(20);
vector<int> v2(10);

void g() {
f(v1);
f(v2);

}

Equivalent code with C++ vectors

CP1–27 – slide 23 – 22nd November 2010

Summary

C

I Good general purpose language.

I Good for interfacing with hardware.

I Not good for big projects(organisationally).

Fortran

I Good for numerical computation.

I Stable, well-supported.

C++

I Use with the standard template library.

Java

I Widely used, good for web applets, and neater than C++

I Not as fast or efficient as C++.

CP1–27 – slide 24 – 22nd November 2010


