
Computer Programming: Skills & Concepts
(INF-1-CP1)

The C Programming Language

21st September, 2010

CP1, lecture 2 21st September, 2010

1

The C Programming Language

• Developed by Dennis Ritchie in 1972 at Bell Labs, in conjunction with the
UNIX operating system.

• The American National Standards Institute (ANSI) formed a committee to
develop a standardised version of C. The main standard was published in 1989
and is known as ANSI-C.

• An imperative programming language - programming task is achieved by a list
of commands acting on a set of program variables.

CP1, lecture 2 21st September, 2010

2

Imperative Programming Languages

specify HOW the processing must be done

• Have a collection of commands which can be used;

• Programmer is allowed to define named variables, of their own choice (of int
or float or char);

• Programmer can write down an ordered sequence of commands;

• Commands might do things like read input, print output, and/or give new
values to the pre-defined variables

CP1, lecture 2 21st September, 2010

3

Getting a working C program

• Write the code.

• Use gcc to translate your C program into something the computer will
understand.

• Run the program, once we have a version which has successfully compiled.

EDIT → COMPILE → RUN.

CP1, lecture 2 21st September, 2010

4

What to do when it doesn’t work
“Right first time” is not a reasonable strategy for programming

• Some ‘debugging’ usually necessary.

• You can learn a lot from trial-and-error.

• Spending time working on the logical structure of your code, and the
typographical details, will minimize debugging time.

• (for assignments) You are only assessed on the final version that you submit.

CP1, lecture 2 21st September, 2010

5

A simple C program
/* Simple hello program */

#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("\n");
printf("Hello world!");
printf("\n");
return EXIT_SUCCESS;

}

hello.c: no variables, no input commands. Only some printing (and return).

CP1, lecture 2 21st September, 2010

6

The Edit-Compile-Run cycle

• Edit:

– Where do I write this C stuff?

• Compile:

– How do I get my C program translated into something the computer will
understand?

• Run:

– How do I start my program?
– Where do the results get output?

CP1, lecture 2 21st September, 2010

7

The Edit-Compile-Run cycle

• Edit:

– emacs hello.c

• Compile:

– gcc -Wall hello.c
– (gcc stands for Gnu C Compiler);
– -Wall is an option to ask gcc to write compile errors/warning to the “Wall”.

• Run:

– ./a.out

SEE NEXT LECTURE (and Monday’s LAB)

CP1, lecture 2 21st September, 2010

8

The structure of “Hello World”

CP1, lecture 2 21st September, 2010

9

Header Files
/* Simple hello program */

/* --------------------- */
#include <stdio.h>
#include <stdlib.h>
/* --------------------- */

int main(void) {
printf("\n");
printf("Hello world!");
printf("\n");
return EXIT_SUCCESS;

}

• Includes headers verbatim into
the program text.

• <filename> files are in
the system directories (often
/usr/include).

• “filename” files are in the
current directory.

CP1, lecture 2 21st September, 2010

10

Comments
/* --------------------- */
/* Simple hello program */
/* --------------------- */

#include <stdio.h>
#include <stdlib.h>

int main(void) {
printf("\n");
printf("Hello world!");
printf("\n");
return EXIT_SUCCESS;

}

• Everything in-between the /*
and /* is ignored.

• You should always comment
(well) every program that you
write.

• Include the author name, and
the date.

CP1, lecture 2 21st September, 2010

11

main
/* Simple hello program */

#include <stdio.h>
#include <stdlib.h>

/* --------------------- */
int main(void) {

printf("\n");
printf("Hello world!");
printf("\n");
return EXIT_SUCCESS;

}
/* --------------------- */

• A function called main.

• Contrast with “+”.

• (void) In this case main
takes no arguments.

• int In this case, main returns
an integer.

• main is always the first
function to execute.

CP1, lecture 2 21st September, 2010

12

Every C program has exactly one main

• main is a function;

• main indicated to the compiler that the following section of code (within the
parentheses {.}) is what gets executed when the program is run;

• main often has an empty input - this is indicated by (void)

• The name main is a reserved word in C (eg, cannot be used for variables);

• This output of this main is of type int . . .
but this is only a “flag” (computation ok/not-ok)

CP1, lecture 2 21st September, 2010

13

Functions
A function is any procedure which takes some (possibly empty) input,
does some computation, and returns some (possibly empty) output

• Functions: Consider ‘+’

– 1+2 - evaluates to the value 3
– plus(1,2) - returns the value 3
– plus(A,B) - returns the value C

CP1, lecture 2 21st September, 2010

14

printf
/* Simple hello program */

#include <stdio.h>
#include <stdlib.h>

int main(void) {
/* --------------------- */
printf("\n");
printf("Hello world!");
printf("\n");

/* --------------------- */
return EXIT_SUCCESS;

}

• printf is a library function.

• It has a manual page:
man 3 printf.

• Contrast to man printf
(remember the 3...)

• \n = new line.

CP1, lecture 2 21st September, 2010

15

return
/* Simple hello program */

#include <stdio.h>
#include <stdlib.h>

int main(void) {

printf("\n");
printf("Hello world!");
printf("\n");

/* --------------------- */
return EXIT_SUCCESS;

/* --------------------- */
}

• Remember that main returns
an integer.

• EXIT SUCCESS is the integer
that it returns.

• stdlib.h defines
EXIT SUCCESS as 0.

• Numbers are often used in
programming to represent a
‘status’.

CP1, lecture 2 21st September, 2010

16

Programming Errors

• Most programs fail to work correctly the first time.

• Tracking down the errors requires time + patience + attention to detail.

• Skill in debugging is gained from experience (and attention to detail).

CP1, lecture 2 21st September, 2010

17

Example

#include <stdio.h>;
#include <stdlib.h>
.....

[fletcher]mcryan: gcc -Wall hello.c
hello.c:3:19: warning: extra tokens at end of #include directive

CP1, lecture 2 21st September, 2010

18

Common errors

• Mis-spelling

• Missing Punctuation

• Additional symbols

• Wrong punctuation

• Missing #include

• No main function

• return statement forgotten
in a function

• Printf → Pritnf

• (“\n”) → (‘\n’)

• #include <stdio.h>;

• (“\n”) → (“\n)

CP1, lecture 2 21st September, 2010

19

Manifestations of an error

• Compiler error messages:

– Fatal mistake - cannot continue.

• Compiler warning messages:

– A mistake was found, the compiler ‘guessed’ what you meant, and continued.
– Your program may still manage to work!
– To show all the warnings - “gcc -Wall”.

• Error while running the program:

– “Segmentation fault”.
– The wrong result.

CP1, lecture 2 21st September, 2010

