
Computer Programming: Skills & Concepts (CP1)
Structured data: typedef and struct

26th October 2010

CP1–16 – slide 1 – 26th October 2010

Last lecture

I Strings.

I Arrays cont. - basic pattern matching.

I Bitwise operations on int (on board).

CP1–16 – slide 2 – 26th October 2010

Today

I typedef - for very simple type definitions.

I struct - for interesting type definitions.

I switch/case statement.

CP1–16 – slide 3 – 26th October 2010

Basic data types in C

int char float double

Really that’s all . . .
except for variations such as signed char, unsigned char, short, . . .

I These are the basic options we have for variables.

I We can apply operators to them, compare them etc * , + , ==, <
etc.

CP1–16 – slide 4 – 26th October 2010

typedef – “create your own types”

Create your own types.

I Well, really just rename the standard ones.

I Use the type just like you would the standard one.

I Useful, for example, in physics:
Can create metres, kilograms, seconds, joules etc by typedef-ing
float.

CP1–16 – slide 5 – 26th October 2010

More ‘complex’ types

Complex numbers.
Consist of a real and an imaginary part.
Special ways of performing algebraic operations.
Need 2 variables to represent each number.

Messy!

CP1–16 – slide 6 – 26th October 2010

Adding 2 complex numbers

/* i3 and r3 are returned as the result */
int add(float i1, float i2, float r1, float r2,

float *r3, float *i3) {
*r3 = r1 + r2 ;
*i3 = i1 + i2 ;
return EXIT_SUCCESS;

}

CP1–16 – slide 7 – 26th October 2010

Structured data

Two new data structures. Normally use with typedef.

struct:

I Allows you to group related data into a single type.

I Functions can return a struct and hence return multiple items of
data.

enum:

I Allows you to define a set of data that will be enumerated to an
integer.

I Naming convention – common to append ‘_t’ to indicate that the
name is a type.

CP1–16 – slide 8 – 26th October 2010

A complex number definition

/* Complex number type */

typedef struct {
/* Real and imaginary parts. */
float re, im;

} Complex_t;

CP1–16 – slide 9 – 26th October 2010

A function to return a complex number

we access the member data with .〈member-name〉

Complex_t MakeComplex (float r, float i)
/* Function to create an item of ‘complex number’ type
with real part r, imaginary part i. */

{
Complex_t z;
z.re = r;
z.im = i;
return z;

}

CP1–16 – slide 10 – 26th October 2010

struct and typedef

With typedef

typedef struct {
...
} Complex_t;

Complex_t a, b;

Without typedef

struct Complex_t {
...

};

struct Complex_t a, b;

CP1–16 – slide 11 – 26th October 2010

Complex number functions

Complex_t ComplexSum(Complex_t z1, Complex_t z2)
/* Returns the sum of z1 and z2 */
{
Complex_t z;
z.re = z1.re + z2.re;
z.im = z1.im + z2.im;
return z;

}

int ComplexEq(Complex_t z1, Complex_t z2)
/* Testing for equality of structs. */
{

return (z1.re == z2.re) && (z1.im == z2.im);
}

CP1–16 – slide 12 – 26th October 2010

Multiply and modulus

Complex_t ComplexMultiply(Complex_t z1, Complex_t z2)
/* Returns product of z1 and z2 */
{
Complex_t z;
z.re = z1.re*z2.re - z1.im*z2.im;
z.im = z1.re*z2.im + z1.im*z2.re;
return z;

}

float Modulus(Complex_t z)
{
return sqrt(z.re*z.re + z.im*z.im);

}

CP1–16 – slide 13 – 26th October 2010

An example of using these

int main(void)
{
Complex_t z,z1,z2 ;
z1 = MakeComplex(1.0, -5.0);
z2 = MakeComplex(3.0, 2.0);
z = ComplexMultiply(z1, z2);
printf("The modulus of z is %f\n", Modulus(z));
if (ComplexEq(z, MakeComplex(13.0, -13.0))) {

printf("z is equal to 13-13i\n");
} else {

printf("z is not equal to 13-13i\n");
}
return EXIT_SUCCESS;

}

CP1–16 – slide 14 – 26th October 2010

Using arrays instead

int main(void)
{
Complex_t zarr[3] ;
zarr[0] = MakeComplex(1.0, -5.0);
zarr[1] = MakeComplex(3.0, 2.0);
zarr[2] = ComplexMultiply(zarr[0], zarr[1]);
printf("The modulus of z is %f\n", Modulus(zarr[2]));
if (ComplexEq(zarr[2], MakeComplex(13.0, -13.0))) {

printf("z is equal to 13-13i\n");
} else

printf("z is not equal to 13-13i\n");
/* This line shows how to access individual components */
printf("z is %d %d i\n",zarr[2].re, zarr[2].im);
return EXIT_SUCCESS;

}

CP1–16 – slide 15 – 26th October 2010

Nested structs

A struct can include another struct. This is called nesting.
To access a nested struct member

triangle_t tri;
int x_pos = 10;

tri.points[0].x = x_pos;

CP1–16 – slide 16 – 26th October 2010

Passing struct to a function

Structs are passed by call by value.
func1(c1) { ...

The function cannot change member values in the struct. To pass a struct
by call by reference:

func1(Complex_t *c1);
.
.
Complex_t c1;
func1(&c1);

CP1–16 – slide 17 – 26th October 2010

Passing a struct element to a function

Elements are passed by call by value.
func1(c1.x) { ...

To pass a struct element by call by reference:

func1(int *x);
.
.
Complex_t c1;
func1(&c1.x);

CP1–16 – slide 18 – 26th October 2010

Summary (struct)

I typedef allows you to re-name types:
Handy with struct and enum.

I struct allows you to group related data into a single variable:
– Useful for records of multiple items.
– Bank accounts – name, address, balance etc.

I Can treat struct just like any other type:
– return from functions
– Arrays of struct
– Nested structures
– Passing structs to a function.

CP1–16 – slide 19 – 26th October 2010

enum

Allows data with integer equivalents to be represented:
– For example months of the year.
– Variables are actually stored as integers.

typedef enum {JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC} Month_t ;

typedef struct {
int day;
Month_t month;
int year;

} Date_t

Date_t Today;
Today.day = 8 ; Today.month = NOV ; Today.year = 2004

CP1–16 – slide 20 – 26th October 2010

switch/case statement

I A multiple branch selection statement.

I Tests the value of an expression against a list of integers or
character constants.

I Similar to a set of nested if statements:
– Except can only test for equality.
– Neater and more readable.
– Well suited to testing enumerated types
– (not good) need to break out of the switch.

CP1–16 – slide 21 – 26th October 2010

switch/case syntax

switch (〈expression〉) {
case 〈constant-1〉:

〈statement-sequence-1〉;
break;

case 〈constant-2〉: /* constants are integers */
〈statement-sequence-2〉;
break;

case 〈constant-3〉:
.
.
default:

〈statement-sequence〉
}

CP1–16 – slide 22 – 26th October 2010

Function to return the next day
Date_t Tomorrow(Date_t d) {
switch (d.month) {
case JAN:
if (d.day == 31) {
d.day = 1; d.month = FEB;

} else
d.day += 1;

break;
/* Now the other months FEB - NOV */
...
case DEC:
if (d.day == 31) {
d.day = 1; d.month = JAN; d.year++;

} else
d.day += 1;

}
return d;

} CP1–16 – slide 23 – 26th October 2010

Summary

enum allows representation of information with integer equivalence:

I Months, days etc

I Items in a stock list.

I Buttons on a ’pocket calculator’ application.

switch/case statement:

I Similar to a set of nested if statements

I Useful for processing an enumerated type.

I For example, processing the key pressed in the calculator.

CP1–16 – slide 24 – 26th October 2010

