
Computer Programming: Skills & Concepts
(INF-1-CP1)
Functions

12th October, 2010

CP1–9 – slide 1 – 12th October, 2010

Summary of Lecture 9

I Developing triangle using the descartes graphics routines.

CP1–9 – slide 2 – 12th October, 2010

Functions

I Certain computations may have to be done repeatedly with different
input

I For instance: compute the minimum or maximum of two numbers

I Functions enable compact handling of this

CP1–9 – slide 3 – 12th October, 2010

“Triangle numbers”

#include <stdlib.h>

int main(void)
{

int i, sum = 0, n;
printf("The integer n, please: ");
scanf("%d",&n);
for (i = 1; i <= n; ++i) {

sum += i; /* sum = sum + i */
}
printf("sum = %d\n", sum);
return EXIT_SUCCESS;

}

CP1–9 – slide 4 – 12th October, 2010



Equivalent formulation
#include <stdlib.h>
#include <stdio.h>

int SumTo(int n)
/* computes 1 + 2+ ... + n */
{

int i, sum = 0;
for (i = 1; i <= n; ++i) {

sum += i;
}
return sum;

}

int main(void)
{

int n;
printf("The integer n, please: ");
scanf("%d",&n);
printf("sum = %d\n", SumTo(n));
return EXIT_SUCCESS;

}
CP1–9 – slide 5 – 12th October, 2010

Function definition

The initial line

int SumTo(int n)

is the header. It tells the compiler that sum is a function taking one
argument of type int and returning a value of type int.
The part in braces

{
...

}

is the body. It specifies how the function is to be computed. It is like a
little program in itself: it opens with some declarations, followed by some
statements.

CP1–9 – slide 6 – 12th October, 2010

Use of the function

A function must be defined before use.
After the declaration, SumTo(expr ) is an expression of type int whenever
expr is an expression of type int.

printf("sum = %d\n", SumTo(n));

In the example, printf() expects an integer expression, so we’re fine.

CP1–9 – slide 7 – 12th October, 2010

A closer look at the header of a function

I int gives the type of the result. The keyword void indicates that
the function does not produce a result.

I SumTo is the name of the function: how we will refer to it in the
remainder of the program.

I The part in parentheses, in this case (int n), specifies the formal
parameters and their types. In this case there is one parameter of
type int. The keyword void indicates that the function has no
parameters.

All of this is required by the compiler so it can check that the function is
always used correctly.

CP1–9 – slide 8 – 12th October, 2010



A closer look at the body of a function

I { } braces enclose the body of the function definition;

I int i, sum = 0; variables local to the function are declared
here. We may choose to initialise some of them;

I for ... the code to be executed when the function is called;

I return sum; the return statement terminates the function call
and specifies the value returned.

CP1–9 – slide 9 – 12th October, 2010

Local Variables

Variables defined within a function are its local variables.

I they are only valid within the function

I they are destroyed when the function finishes

I what happens when the function is called a second time?

CP1–9 – slide 10 – 12th October, 2010

Things to note

I Local variables overshadow existing global ones.

I return statements may appear anywhere in the body. When
executed the function body is left.

I parameters may be used as local variables, e.g., we could have
written the loop as

sum = 0;
while (n >= 1) {

sum += n;
--n;

}

CP1–9 – slide 11 – 12th October, 2010

Maximum, minimum

float max(float x, float y)
{

if (x < y)
return y;

else
return x;

}

CP1–9 – slide 12 – 12th October, 2010



Squaring a number

int Sqr(int n)
{

return n*n;
}

CP1–9 – slide 13 – 12th October, 2010

Length of a line segment

float Length(lineSeg_t l)
{

return sqrt(
Sqr(XCoord(InitialPoint(l)) - XCoord(FinalPoint(l)))
+ Sqr(YCoord(InitialPoint(l)) - YCoord(FinalPoint(l)))

);
}

CP1–9 – slide 14 – 12th October, 2010

What is the point?

int main(void)
{

const N = 10;
int i;

printf(" n tri(n)\n");
for (i = 1; i <= N; ++i) {

printf(" %3d %6d\n", i, SumTo(i));
}
return EXIT_SUCCESS;

}

NB. No clash between i here and i in SumTo.

CP1–9 – slide 15 – 12th October, 2010

if (ToRight(p, v1, v2)
&& ToRight(p, v2, v3)
&& ToRight(p, v3, v1)) {

printf("Interior!\n");
} else if (!ToRight(p, v1, v3)

&& !ToRight(p, v3, v2)
&& !ToRight(p, v2, v1)) {

printf("Boundary!\n");
} else {

printf("Exterior!\n");
}

Saves writing similar code six times!

CP1–9 – slide 16 – 12th October, 2010



Scope

Scope refers to the conventions where a variable is valid

I global variables are defined before the main function and are valid
everywhere

I local variables are defined within a function and are only valid there

I main is also a function: its variables are only valid there

I the scope of local variables overshadows the scope of global
variables with the same name

CP1–9 – slide 17 – 12th October, 2010

Scope

int a = 0;

void f(int n)
{ int i; i = i + 1; n = n + 1; a = a + 1;}

int main(void)
{

int i = 0, n = 0;
printf("Checkpoint A: i = %d, n = %d and a = %d\n",

i, n, a);
f(n);
printf("Checkpoint B: i = %d, n = %d and a = %d\n",

i, n, a);
return EXIT_SUCCESS;

}

CP1–9 – slide 18 – 12th October, 2010

Scope. (Spot the difference!)

int a = 0, i = 0, n = 0;

void f(int n)
{ int i; i = i + 1; n = n + 1; a = a + 1;}

int main(void)
{

printf("Checkpoint A: i = %d, n = %d and a = %d\n",
i, n, a);

f(n);
printf("Checkpoint B: i = %d, n = %d and a = %d\n",

i, n, a);
return EXIT_SUCCESS;

}

CP1–9 – slide 19 – 12th October, 2010


