
Computer Programming: Skills & Concepts
(INF-1-CP1)

Intro to Practical 1

5th October, 2010

CP1–7 – slide 1 – 5th October, 2010

Summary of Lecture 6

I float and double.

I The marathon.c program.

I Solving quadratic equations.

I General form of if-statement.

I Developing quadratic.c via nested if-statements.

I Boolean operators.

CP1–7 – slide 2 – 5th October, 2010

This Lecture

I The descartes graphics routines.

I Example: Square-drawing example using descartes routines.

I Discussion on Practical 1.

I scanf and erroneous input.

CP1–7 – slide 3 – 5th October, 2010

descartes.c

descartes.c is a set of small functions or routines which
perform basic graphics tasks through a primitive graphics
drawing tool.

I What is a function (in programming)?
It is an encapsulated and named section of code, which takes a
number of parameters (or certain declared types), performs a
sequence of C-statements, and returns a value of a declared type.

CP1–7 – slide 4 – 5th October, 2010

descartes.h

descartes.h contains the type declarations for the (non-native) struc-
tured data types and functions of descartes.c. But does NOT contain
the code . . .

/* A point is specified by its x- and y-coordinates. */

typedef struct {int x, y;} point_t;

/* A line segment is specified by its endpoints. */

typedef struct {point_t initial, final;} lineSeg_t;

/* Waits until the user clicks the left mouse button, then

* returns the point that the user is indicating. If the

* middle mouse button is clicked then the value returned

* is (-1, -1). */

point_t GetPoint(void);

CP1–7 – slide 5 – 5th October, 2010

descartes.h cont’d

/* Creates a point with given coordinates. */

point_t Point(int a, int b);

/* Returns the x-coordinate of the point given as argument. */

int XCoord(point_t p);

/* Returns the y-coordinate of the point given as argument. */

int YCoord(point_t p);

/* Creates a line segment with given endpoints. */

lineSeg_t LineSeg(point_t p1, point_t p2);

/* Returns one endpoint of a line segment... */

point_t InitialPoint(lineSeg_t l);

/* ... returns the other endpoint. */

point_t FinalPoint(lineSeg_t l);

CP1–7 – slide 6 – 5th October, 2010

descartes.h cont’d

/* Returns the length of a line segment. */

float Length(lineSeg_t l);

/* Draws a line segment. */

void DrawLineSeg(lineSeg_t l);

/* Opens and initialises the graphics window */

void OpenGraphics(void);

/* Closes the graphics window - actually waits for a

* right-mouse-click */

void CloseGraphics(void);

CP1–7 – slide 7 – 5th October, 2010

Practical 1

I Part A (generalized Imperial to Metric distance converter) does not
use the graphics tool.

I For Parts B-D, you should use the pre-programmed implementations
of the functions of descartes.h. The code for these is in
descartes.c.

I /group/teaching/cp1/Proj1/ contains completed versions of
descartes.h and descartes.c, and mostly blank versions of the
files convert.c, segment.c, rectangle.c and polygon.c:

I Do not edit descartes.h or descartes.c!!
I Your C programs for Parts A, B, C, D should be written into

convert.c, segment.c, rectangle.c and polygon.c respectively.

CP1–7 – slide 8 – 5th October, 2010

Part B: segment.c

Write a program which reads two points in the plane (specified
as clicks on the graphics window), draws the line connecting
these points, and calculates the distance between them.

Discuss: Which functions from descartes.h will be useful?

CP1–7 – slide 9 – 5th October, 2010

Part C: rectangle.c

Write a program which reads in two points from the plane
(given as clicks on the graphics window), and then:

(i) draws the implied rectangle,
(ii) computes the length of its diagonal,
(iii) classifies the shape of the rectangle as almost square, wide

or tall.

Discuss: Which functions from descartes.h will be useful?

CP1–7 – slide 10 – 5th October, 2010

Part D: polygon.c

Write a program which reads in a sequence of points from the
plane (given as clicks on the graphics window), and computes
the perimeter of the polygon defined by those points.

Discuss: Which functions from descartes.h will be useful?

CP1–7 – slide 11 – 5th October, 2010

descartes example: Drawing a Square

Write a program which uses the descartes functions to load
the graphics window, read one point (specified by a click) from
this window, and draw a square of side-length 100 which has
this point as its North-West corner.

Which descartes functions will we need? Discuss.
What variables will we define?

CP1–7 – slide 12 – 5th October, 2010

Drawing a Square

Steps of our program:

I Start up the Graphics window.

I Read in a point from that window.

I Draw the 4 edges of the square.

I Close the graphics window.

CP1–7 – slide 13 – 5th October, 2010

square.c - outline

#include <stdlib.h>

#include <stdio.h>

#include "descartes.h"

int main(void)

{

point_t p, q; /* Two point variables, */

lineSeg_t pq; /* One line segment variable */

int x, y; /* Two integers. */

OpenGraphics(); /* Load graphics window. */

printf("Indicate NW corner by clicking left mouse button.\n");

p = GetPoint(); /* p stores point where the user clicked. */

........ /* Draw 4 line segs - LineSeg(,), DrawLineSeg(,) */

CloseGraphics();

return EXIT_SUCCESS;

}

CP1–7 – slide 14 – 5th October, 2010

square.c

#include <stdlib.h>

#include <stdio.h>

#include "descartes.h"

/* Draws a square, of side 100, with given NW corner */

int main(void)

{

point_t p, q; /* Two points, */

lineSeg_t pq; /* a line segment */

int x, y; /* and two integers. */

OpenGraphics();

printf("Indicate NW corner by clicking left mouse button.\n");

p = GetPoint(); /* p stores the point where the user clicked. */

x = XCoord(p); /* We can take a point apart */

y = YCoord(p); /* into its two coordinates... */

q = Point(x + 100, y); /* and then reassemble. */

pq = LineSeg(p, q); /* Two points define a line segment. */

DrawLineSeg(pq); /* Let’s have a look at what we’ve got. */

CP1–7 – slide 15 – 5th October, 2010

square.c cont’d

p = q; /* Start where we left off.*/

x = XCoord(p);

y = YCoord(p);

q = Point(x, y - 100);

pq = LineSeg(p, q);

DrawLineSeg(pq);

/* We can construct these shifted points more tersely... */

p = q;

q = Point(XCoord(p) - 100, YCoord(p));

DrawLineSeg(LineSeg(p, q));

p = q;

q = Point(XCoord(p), YCoord(p) + 100);

DrawLineSeg(LineSeg(p, q));

CloseGraphics();

return EXIT_SUCCESS;

}
CP1–7 – slide 16 – 5th October, 2010

Makefile

CC = /usr/bin/gcc

FLAGS = -g -ansi -I/usr/X11R6/include -I/usr/include/srgp

-L/usr/X11R6/lib -Wall

LIBS = -lm -lX11 -lsrgp

descartes.o: descartes.c descartes.h

$(CC) $(FLAGS) -c descartes.c $(LIBS)

square: square.c descartes.o

$(CC) $(FLAGS) -o square descartes.o square.c

$(LIBS)

To apply this . . . type make square at the command line.
. . . if compilation succeeds, the executable gets saved in square
. . . then type ./square to run

CP1–7 – slide 17 – 5th October, 2010

