
Computer Programming: Skills & Concepts (CP1)
Files in C

18th November, 2010

CP1–26 – slide 1 – 18th November, 2010

Today’s lecture

I Character oriented I/O (revision)

I Files and streams

I Opening and closing files

CP1–26 – slide 2 – 18th November, 2010

Idiom for character-oriented I/O

char c;

while ((c = getchar()) != EOF) {
/* Code for processing the character c */

}

CP1–26 – slide 3 – 18th November, 2010

File length

char c;
int length = 0;

while ((c = getchar()) != EOF) {
++length;

}

printf("File length is %d\n", length);

Don’t forget to initialise length, i.e. the length = 0 part.

CP1–26 – slide 4 – 18th November, 2010

Copying a file

char c;

while ((c = getchar()) != EOF) {
putchar(c);

}

Note that putchar(c) is the equivalent to printf("%c", c)

CP1–26 – slide 5 – 18th November, 2010

Copying a file, checking for errors

char c;

while ((c = getchar()) != EOF) {
/* The manual says putchar returns the character written,

or EOF on error (e.g. disk full) */
if (putchar(c) == EOF) {
perror("error writing file");
exit(1);

}
}

CP1–26 – slide 6 – 18th November, 2010

Example: Count occurrences of uppercase letters

int main(void) {
int c, countu;
countu = 0;

while ((c = getchar()) != EOF) {
if (isupper(c)) {
countu += 1;

}
}

printf("%d uppercase letters\n", countu);
}

CP1–26 – slide 7 – 18th November, 2010

The Unix I/O model

An executing program has a standard input, a standard output, and a
standard error.

We’ve been using these – they’re all usually the terminal.

getchar(), putchar(), printf() etc. all use standard input/output.

CP1–26 – slide 8 – 18th November, 2010

Unix file redirection

The Unix shell lets one specify the standard input, output and error for
the program:

I Input from a file: ./ftour < data50

I Output to a file: ./ftour > log

I Input and output redirection: ./ftour < data50 > log

I Input and output from/to a program (piping):
cat data50 | ./ftour | grep length

CP1–26 – slide 9 – 18th November, 2010

Streams

In C we talk about input and output streams

I getchar() reads from the standard input stream

I putchar(ch) writes to the standard output stream

You might think of a stream as a file – but in practice, streams often end
at a keyboard, a window or another program.

It is more accurate to think of streams as connectors to files etc., which
hide the tricky details. (You don’t need to know whether your stream is a
file, terminal, network connection etc.)

CP1–26 – slide 10 – 18th November, 2010

Standard Streams

All C programs begin with three standard streams

I stdin is read by getchar()

I stdout is written to by putchar(c)

I stderr is a second output stream, used by error message functions
(e.g. perror()).

These streams are defined in stdio.h.

CP1–26 – slide 11 – 18th November, 2010

Using named streams

All the standard I/O functions have a variant that has a named stream as
a parameter

fprintf(stdout, "Hello") ≡ printf("Hello")

putc(c, stdout) ≡ putchar(c)

getc(stdin) ≡ getchar()

Use the manual pages to find the variants!

Same idea as sscanf, sprintf for strings.

CP1–26 – slide 12 – 18th November, 2010

Remember practical 2

void SkipWhiteSpace(void) {
int ch = ReadChar();

while (ch == ’ ’ || ch == ’\n’ || ch == ’\t’) {
ch = ReadChar();

}

UnReadChar(ch);
}

CP1–26 – slide 13 – 18th November, 2010

Using standard calls

void SkipWhiteSpace(void) {
int ch = getc(stdin); /* or getchar() */

while (ch == ’ ’ || ch == ’\n’ || ch == ’\t’) {
ch = getc(stdin); /* or getchar() */

}

ungetc(ch, stdin); /* There is no ungetchar(ch) */
}

CP1–26 – slide 14 – 18th November, 2010

Example: Replace “iz” by “is”

int main(void) {
int c, prev = 0;

while ((c = getchar()) != EOF) {
if (prev == ’i’ && c == ’z’) {
putchar(’s’);

} else {
putchar(c);

}
prev = c;

}
}

CP1–26 – slide 15 – 18th November, 2010

Using named streams

int main(void) {
int c, prev = 0;

while ((c = getc(stdin)) != EOF) {
if (prev == ’e’ && c == ’z’) {
putc(’s’, stdout);

} else {
putc(c, stdout);

}
prev = c;

}
}

CP1–26 – slide 16 – 18th November, 2010

Opening new streams

Streams have the type FILE *. E.g.

FILE *stdin, *stdout, *stderr;
FILE *wordlist;

Streams do not always end in a file despite the name!

CP1–26 – slide 17 – 18th November, 2010

Opening files

FILE *wordlist;

wordlist = fopen("wordlist.txt", "r");

if (wordlist == NULL) {
printf("Can’t find the word list\nBye!\n");
return EXIT_FAILURE;

}

/* To be completed */

fclose(wordlist);

CP1–26 – slide 18 – 18th November, 2010

fopen()

FILE *fopen(const char *path, const char *mode)

Opens a stream for the file named path

I E.g. fopen("output.txt", "w");

I E.g. fopen("/usr/include/stdio.h", "r");

The mode selects read or write access

I This prevents accidents

I Anyway, you can’t write to a CD-Rom.

fopen() returns NULL on failure

CP1–26 – slide 19 – 18th November, 2010

fopen() modes

"r": Open text file for reading

"w": Open text file for writing

"a": Open text file for appending

and several others . . .

What happens if the file exists already?

CP1–26 – slide 20 – 18th November, 2010

Copying a File

FILE *in, *out;

in = fopen("wordlist.txt", "r");
out = fopen("copy.txt", "w");

while ((c = getc (in)) != EOF) {
putc(c, out);

}

fclose(in);
fclose(out);

CP1–26 – slide 21 – 18th November, 2010

fclose()

fclose() discards a stream

It is good practice to close streams when they are no-longer needed, to
avoid operating system limits.

Exiting a program closes all streams.

CP1–26 – slide 22 – 18th November, 2010

perror(): reporting errors

fopen() may return NULL for many reasons

I File not found

I Invalid path

I Permission denied

I Out of disk space

I Etc.

perror() prints an error related to the last failed system call.

CP1–26 – slide 23 – 18th November, 2010

Using perror()

FILE *wordlist;

wordlist = fopen("silly.txt", "r");

if (wordlist == NULL) {
perror("Can’t open word list");
return EXIT_FAILURE;

}

: ./prac3

Can’t open word list: No such file or directory

CP1–26 – slide 24 – 18th November, 2010

Buffering

(Most) streams are buffered: Text written to a stream may not appear
immediately.

fflush(FILE *stream)

forces the pending text on a stream to be written.

As does fclose(stream).

fprintf(stream, "\n");

Streams connected to terminals are usually flushed after each newline
character.

CP1–26 – slide 25 – 18th November, 2010

Summary: Streams

Have the type FILE *

Programs start with three streams

I stdin

I stdout

I stderr

CP1–26 – slide 26 – 18th November, 2010

Summary: New functions

fopen() – open a stream for a file

getc() – similar to getchar()

putc() – similar to putchar()

fprintf() – similar to printf()

fscanf() – similar to scanf()

fclose() – closes a stream

fflush() – flushes a buffer

perror() – reports an error in a system call

CP1–26 – slide 27 – 18th November, 2010

