(©Edinburgh University 2010 1

Computer Programming 1 Practical 3

Practical 3: Doing the rounds

Instructions

This is an assessed practical in five parts, A-E. Each part of the practical guides
you through the construction of part of a program.

To obtain credit for your work, you will need to submit electronically the most
advanced version of your program.

The deadline for completion and electronic submission of Practical Ezxercise 3
is 2pm, Monday 29th November (Week 11). In the absence of evidence of medical
or other difficulties, work submitted after the deadline will attract zero credit.

Aims
e To provide practice in the use of arrays in C.

e To provide an introduction to the use of heuristics to find approximate
solutions to hard problems.

Assessment

The maximum credit that can be obtained for this practical is 35 marks (out of
a total of 100 for the whole of the continuously assessed element of the course).
The five parts, labelled A-E, differ in value: Part A is worth 12 marks, Parts B
and C 7 marks each, Part D 5 marks, and E 4 marks. Try to complete at least
Parts A—C, but don’t spend excessive time on the practical, particularly Parts D
and E. Note that a good quality solution to Parts A—C may possibly achieve a
B grade, and Parts A and B alone may possibly achieve a pass mark.

Notes

e Read through this document before you reach the keyboard, and work out
in advance what you need to do.

e If you are genuinely stuck, seek help immediately from your tutor, the
course lecturer, or from the InfBase drop-in centre in Appleton Tower.

e [t is fine to generally discuss the project with your fellow-students, or get
help with debugging. However, you may neither share code, nor take code
from others, in completing the task.



(©Edinburgh University 2010 2

Preparation

This practical has associated template and other files. You will need to copy
these files into your directory so that you can modify them.

To copy the files, make sure you are in the directory that you have created
for this practical and issue the command

cp /group/teaching/cpl/Prac3/*x ./

Electronic submission

In this practical there is just one program file to be submitted, namely tour.c.
The specific form of the command for submitting this file is

submit csl cpl P3 tour.c
In addition you are invited to submit a results file thus
submit csl cpl P3 results
in which you return
e The output of your program on the test data in parts B, C, D and E, and

e if you attempt Part E, a description of the method you used and the output
you obtained.

Compilation

The program you will add to is in the file tour.c. You may compile it by issuing
the command make tour in the shell window. If compilation is successful, an
executable file tour will be created; you may run it by typing ./tour in the shell
window. This produces an interactive version of the program in which you may
input data by moving the mouse over the graphics window. This mode is good
for testing and debugging.

You may also compile the same program by issuing the command make ftour.
If compilation is successful, an executable file ftour will be created; ftour differs
from tour in taking input from a file instead of the graphics window. You may
run the program on data file data50 by typing ./ftour < data50 in the shell
window. (There are two other data files, data25 and data75.) From time to
time you will be asked to run your program on the data file data50, and enter
the results obtained in the file results. This file forms part of your submission;
see Electronic submission.



(©Edinburgh University 2010 3

Introduction

We are given a set of n points in the plane, representing a collection of n cities
which a salesman is required to visit. The classical Travelling Salesman Problem
(TSP) is to find the shortest tour that visits each city once and returns to the
starting city. Our version is simplified in two ways. Firstly, we assume that the
distance between any two cities is just the Euclidean (“straight line”) distance
in the plane. If you prefer, there is a perfectly straight road from every city to
every other. (This is the so-called Euclidean TSP.) Secondly, to simplify the
programming slightly, we’ll allow the salesman to start at any city and end at
any other city; in other words, we don’t require him to return to the starting
point, though we do still insist that he visits all n cities. TSP is hard to solve
exactly, so we’ll explore heuristics for obtaining approximate solutions.

Part A [12 marks]

We return to the world of Practical 1, to the extent that we will be reusing
the simple geometry library "descartes.h". So a city will be represented by a
variable of type point_t, and its position will be specified by the user clicking
the (left) mouse button.

In this part we shall (a) allow the user to specify the positions of the cities by
clicking the mouse in the graphics window, (b) display the cities and the route
obtained by visiting them in the order in which they were input, and (c) output
the length of that route. This is all very much like Part D of Practical 1. The
only difference is that we shall need to store the locations of the cities so we can
process them in subsequent parts of the practical. This is where the array comes
in!

#define MAXCITIES 100
point_t city [MAXCITIES];
int numCities = 0;

The above C code declares an array city that can be used to hold up to 100
cities. In general, we won’t want to use the whole array, so we shall have to
remember how much of it we're actually using. The integer numCities is used
to record how many cities there actually are. Of course, numCities should not
exceed MAXCITIES.

Extend the program in the file tour.c by adding functions with headers:

int ReadCities(void)
void DrawTour (void)

double TourLength(void)



(©Edinburgh University 2010 4

These are very similar to functions you were asked to write in Part D of Practi-
cal 1.

The first of these functions should accept a sequence of mouse clicks from the
user (recall the function GetPoint from Practical 1!) and store the points (i.e.,
cities) in successive locations of the array city starting at city[0] (recall that
arrays in C are indexed from 0). It is possible to assign one struct to another
in C, so the assignment city[i] = p is perfectly valid, provided i is an int and
p a point_t. Don’t forget that ReadCities should set the variable numCities
correctly, as well as the array city itself. The end of the input is marked by
the user clicking the middle mouse button: this generates a bogus point with
negative coordinates. The result returned by ReadCities should be false if any
error occurred and true otherwise. There is probably just one possible error:
what is it?

The array city now represents a possible tour, in which the salesman starts at
city[0], then visits city[1], city[2], an so on until city[numCities - 1].
The second function, DrawTour, should display that tour, by drawing the line
segment from city[0] to city[1], city[1], to city[2], and so on up to
city[numCities - 2] to city[numCities - 1]. (Recall the functions LineSeg
and DrawLineSeg from Practical 1.)

Finally, TourLength should compute the length of the tour. (Remember that
we are not counting the edge from city[numCities - 1] to city[0].)

Test your new functions to ensure they are working correctly. In devising
a sanity check for TourLength, it may be useful to know that the sides of the
graphics window all have length 500.

Part B [7 marks]

The order in which the user entered the cities specifies an initial tour, which
will not in general be very efficient. We shall try to improve it by repeatedly
swapping adjacent cities in the array (i.e., by reversing the order in which the
salesman visits a pair of adjacent cities). The function SwapHeuristic repeatedly
suggests pairs of cities to swap. Your job is to write the function TrySwap that
acts on those suggestions.

The function TrySwap should have the header

int TrySwap(int i)

It should behave as follows. First it should find the length of the current tour.
(Refer to Part A.) Then it should should swap the contents of city[i] and
city[i + 1] and recompute the tour length. If the length is shorter, then
TrySwap should return true indicating “success”; otherwise it should reinstate
the original order between city[i] and city[i + 1] and return false indicat-
ing “failure”. It is important that TrySwap returns true only if the new tour is
strictly shorter than the old one. That way, the tour length always decreases and



(©Edinburgh University 2010 )

the function SwapHeuristic must terminate. Otherwise it may be possible for
SwapHeuristic to go into an infinite loop!

Compile your program by issuing the command make tour. Test your new
function. How well does the swap heuristic perform? (Use the TourLength
function to print out the length of the tour.) When you believe your program
is working, recompile it using the command make ftour. Now run the non-
interactive version on the 50-city instance by typing ftour < data50. Record
the length of the resulting tour in the file results. (Just write down the integer
part; ignore the fractional part.)

Part C [7 marks]

Again we’ll try to obtain a good tour by repeated improvements, but this time us-
ing more powerful improvement steps. The function TwoOptHeuristic repeatedly
nominates a contiguous sequence of cities on the current tour, and proposes that
these be visited in reverse order. Your job is to write the function TryReverse
that acts on those suggestions. The function TryReverse should have the header

int TryReverse(int i, int j)

and should behave as follows. First it should find the length of the current
tour. Then it should should reverse the contents of the array city between
components city[i] and city[j] inclusive. (Thus city[i] will be the old
city[j], city[i + 1] will be the old city[j - 1], and so on.) Next the tour
length is recomputed. If the length is shorter, then TryReverse should return
true indicating “success”; otherwise it should reinstate the original order between
city[i] and city[j] and return false indicating “failure”. As before, it is
important that TryReverse returns true only if the new tour is strictly shorter
than the old one.

Test your new function. How well does the “2-Opt Heuristic” (as it is known
in the trade) perform? When you are happy that your program is working,
recompile it using make ftour, and run the new heuristic on the same 50-city
instance. Again, record the tour length in the file results.

Part D [5 marks]

Write a function
void GreedyHeuristic()

that implements the greedy heuristic applied to TSP. A reasonable interpretation
of “greedy heuristic” in this context is as follows. At the outset only city[0]
is “visited”. At some intermediate step, suppose city[0] to city[i - 1] have
been visited; find the unvisited city nearest to city[i - 1], swap it into location
city[i], and regard it as visited. Repeat until all cities are visited. (In other



(©Edinburgh University 2010 6

words, at each step the salesman visits the nearest unvisited city from his current
location.

Test your new function. How well does the greedy heuristic perform? Run the
greedy heuristic on the 50-city data file and record the result in the file results.

Part E [4 marks]|

Can you devise a method that beats all the above? No holds barred in this
part! As in previous parts, record the performance on the 50-city instance in the
file results. This time you should also provide a high-level description of the
method you have used (just a couple of paragraphs).

Checklist

e Electronically submit the program tour.c and the results file results by
the deadline: 2pm, Monday 29th November (Week 11).



