
c©Edinburgh University 2010 1

Computer Programming 1 Practical 2

Practical 2: I’m the operator. . .

Instructions

This is an assessed practical in five parts, A–E. Each part of the practical guides
you through the construction of part of a program.

To obtain credit for your work, you will need to submit electronically the most
advanced version of your program.

The deadline for completion and electronic submission of Practical Exercise 2
is 2pm, Monday 8th November (week 8). In the absence of evidence of medical
or other difficulties, work submitted after the deadline will attract zero credit.

Aims

• To provide experience in tackling a somewhat larger problem than any of
those encountered in Practical 1. This larger problem will be solved by
breaking it into simpler subproblems, whose size is comparable to those we
saw in Practical 1.

• To provide practice in defining and using functions in C. These functions
will encapsulate solutions to the subproblems just mentioned.

• To provide experience in dealing with textual input, albeit in a slightly
artificial environment.

Assessment

The maximum credit that can be obtained for this practical is 35 marks (out of
a total of 100 for the whole of the continuously assessed element of the course).
The five parts, labelled A–E, differ in value: Part A is worth 10 marks, Parts B-D
6 marks each, and Part E 7 marks. Try to complete at least Parts A–C, but don’t
spend excessive time on the practical, particularly Parts D and E. Note that a
high quality solution just to Parts A–D may achieve a B grade.

Notes

• Read through this document before you reach the keyboard, and work out
in advance what you need to do.

• It is perfectly acceptable to discuss the coursework specification with your
classmates, to ask for help with understanding the exercise, or to ask for
help with debugging. It is never acceptable to copy programs or fragments

c©Edinburgh University 2010 2

of programs, either electronically or manually, from other students or from
the internet.

• If you are genuinely stuck, look for help (in the first instance, from the
‘InfBase’ demonstrators on Level 5 of AT in the afternoons; or alternatively
from your tutor or the course lecturer).

Electronic Submission

Credit is given on the basis of the electronically submitted programs (and note
we always require source code, ie, the .c files). If you don’t submit something, we
cannot give you credit for it.

The main program file to be submitted (covering Parts A-D) is calc.c. The
specific form of the command for submitting this file is

submit cs1 cp1 P2 calc.c

The version you submit should be the most advanced one that works. It’s a good
idea to cover yourself by submitting your current version of calc.c. at the end of
each part. This is fine, since newer versions simply overwrite the older ones (be
careful not to re-submit a new version after the deadline, as this will over-write
a file which was submitted on time).

In addition you are invited to submit a summary file thus

submit cs1 cp1 P2 summary

in which you have briefly set out:

• Which parts of the exercise you consider you have successfully completed.

• Any problems you encountered in the parts you attempted but didn’t com-
plete.

• Any features of your program that you wish to draw attention to.

This should be a short document. Try to keep it to say a dozen lines.
The input format for Part E varies slightly from the other parts. Therefore, if

you make an attempt at Part E you should submit it as a separate file partE.c,
in addition to calc.c. Obviously the form for this will be

submit cs1 cp1 P2 partE.c

Preparation

This practical has associated template files. You will need to copy these files into
your directory so that you can modify them.

To copy the templates, make sure you are in the directory that you have
created for this practical and issue the command

cp /group/teaching/cp1/Prac2/* ./

c©Edinburgh University 2010 3

Introduction

The aim of the exercise is to build a simple calculator.

Part A [10 marks]

In this part we’ll tackle the case of a single addition with two operands, for
example 1+2. Note that that form of the input is very restricted: just single digit
numbers and no spaces! It’s quite a long part, but it will help you to get up to
speed for later parts of the practical.

Dealing with textual input is a surprisingly tricky business, so we’ll make life
a little easier by using some predefined functions (and constants) described in
io.h. Here is a summary of what is provided.

• C regards 1 as true and 0 as false. For the benefit of the human reader,
TRUE and FALSE are declared as constants with exactly these values.

• There is an input buffer whose contents may be displayed at any time by
making the function call PrintInputBuffer(). The symbol @ is used to
mark where we are now; characters to the left of @ have already been read,
while those to the right are yet to be read.

• ReadSymbol() returns the next character from the input buffer.

• ParseError("Your error message") writes "Your error message", and
then displays the input buffer.

• Sometimes it is only after we have read a character that we realise we have
gone too far. (C.f. the problem of getting off a bus at the closest stop in an
unfamiliar city!) UnReadSymbol(ch) places the character ch, presumably
the one we just read, back in the input buffer.

• The function ReadNumber is actually in the file calc.c and not io.c. The
intention is that ReadNumber(&n) should read a non-negative number from
the input buffer and place it in the integer variable n (and return true if
successful). Currently it does this. . . but only if the number is a single digit.

That in brief is the raw material; for further details, consult the file io.h.
Now take a look at the file calc.c. What do you think this program does?

Test your intuition by compiling the program (make calc) and running it.
Recall that our goal is to recognise and evaluate simple addition sums such

as 1+2. To this end, you are required to write a function ReadExpression with
the same format as ReadNumber:

int ReadExpression(int *value)

c©Edinburgh University 2010 4

(The fact that ReadExpression and ReadNumber have the same format will be
significant if you reach the final part of the exercise.) The aim of ReadExpression
is to read an expression of the form: number+number , where number denotes
(for the time being) a single digit number. Use the functions ReadNumber and
ReadSymbol to achieve this goal. Return TRUE only if the whole expression is
read successfully. In this case, assign the sum of the two numbers just read to
the call-by-reference parameter value. Otherwise, return FALSE, leave value

unchanged and leave the input buffer in any state.

Tip: During development, use debugging aids such as PrintInputBuffer()

and printf("check point 1"), etc, liberally, to follow the processing of the
input buffer. Remove these debugging statements before submitting the program.

Test ReadExpression. Ensure that appropriate error messages are reported,
using ParseError, when the input expression contains errors.

Part B [6 marks]

Write a function

void SkipWhiteSpace(void)

to skip over any sequence of space (’ ’), newline (’\n’) or tab (’\t’) characters
at the current point on the input buffer. The input buffer should be left at a
point immediately after the white space. . ., which will probably involve calling
UnReadSymbol(). Test SkipWhiteSpace() using PrintInputBuffer().

Modify ReadExpression() (and/or the functions it calls) to allow expressions
containing space to be read, e.g., \n 7 + 8 \n. You face a design decision
here: where is the best place to use SkipWhiteSpace()? Different solutions will
work, but some may be cleaner than others.

Part C [6 marks]

Modify ReadExpression to work with the operators +, -, *, and /, rather than
+ alone. Start by writing a function

int ReadOperator(int *operator)

ReadOperator(&op) should return true only if one of the following operators is
read: +, -, *, and /. The call-by-reference parameter to ReadOperator (in this
case op) should be assigned the character value of the operator returned.

Write a function

int ApplyOperator(int operator, int left, int right).

c©Edinburgh University 2010 5

Depending on the value of op, the function call ApplyOperator(op, x, y) should
return the sum, difference, product or (integer) quotient of the operands x and y.
Since the operator parameter will presumably be provided by the function ReadOperator

we are not expecting any errors when ApplyOperator is called.
Now test ReadExpression with input expressions using all of the four oper-

ators above: e.g., 5*7, 8 - \n3, 2\t*\t3 and 7/2.

At this point, you have completed the core of the exercise. You can
get a safe pass mark, or maybe even a good one, by submitting a
good solution to Parts A–C. Part E is conceptually more difficult
than Part D, but Part D involves writing more code. If you complete
Part E, you will have successfully written a recursive function, even
if you didn’t notice your achievement at the time!

Part D [6 marks]

The function ReadNumber currently reads a number between 0 and 9. For this
part, you a required to modify ReadNumber so that larger numbers can be read,
e.g., 594 or 7654321. To obtain full credit, ReadNumber should be restricted to
read numbers with a maximum of 7 digits. ReadNumber should make the function
call ParseError("Number too large") if this condition is violated. ReadNumber
should return true if a number is successfully read and false otherwise.

Note: after ReadNumber is called, the current position in the input buffer (i.e.,
the @ in PrintInputBuffer’s report) should be at a point immediately after the
whole number. E.g.,

Buffer: 5@\n

Buffer: @ten\n

Buffer: 55@\n

Test your function with at least the following values.

5 0 9 ten # 7654321 87654321

Part E [7 marks]

After all this hard work, this is where the program suddenly becomes interestingly
complex. Because the input format changes slightly in this part, you should create
a copy of calc.c in a file partE.c and work with that. You wouldn’t want to
loose your earlier working program if Part E doesn’t work out for you! Note that
you may compile partE.c by issuing the command make partE.

At this point, you should have thoroughly tested your program and you should
be happy that it works and that it leaves the buffer in the correct state at each
point.

c©Edinburgh University 2010 6

You currently have a calculator that recognises inputs of the form

expression := number operator number

By modifying ReadExpression, extend the calculator to cope with more general
inputs, which are described by the grammar

expression := number | (expression operator expression)

We’ll be meeting formal grammars later in the course, but for the time being,
think of this formula as saying: “An expression is either a number, or a left-
parenthesis, followed by an expression, followed by an operator, followed by a
second expression and finished with right-parenthesis”. (This seems suspiciously
circular, but don’t loose heart!) So that we’re sure we all have the same notion
in mind, here are some examples of expressions:

2

(5 * 9)

(1 + ((5 + 4)*2))

The values of these expressions should be 2, 45 and 19, respectively. Notice
that we insist that expressions are “completely bracketed”: this means that the
order of evaluation is explicitly defined and avoids the problem of parsing the
expression.

It seems that ReadExpression will need to call itself. Will that work? Try
it!

Checklist

• Electronically submit the program calc.c and the brief summary by 2pm,
Monday 8th November (week 8).

• Assuming that you do Part E, please submit that also as file partE.c

(practical by) James Soutter and Mark Jerrum.

I am adding and subtracting
I’m controlling and composing
By pressing down a special key
It plays a little melody
By pressing down a special key
It plays a little melody

I’m the operator with my pocket calculator
I’m the operator with my pocket calculator

The above lines are not c© Edinburgh University.

