
Computer Programming: Skills & Concepts (CP)
Functions and Pointers

Julian Bradfield

Tuesday 10 October 2017

CP Lect 8 – slide 1 – Tuesday 10 October 2017

Last time:

I Functions

I return

This time:

I Global variables

I Motivation for Pointers

I Addresses aka Pointers

CP Lect 8 – slide 2 – Tuesday 10 October 2017

Aside: You can mix types

Good Code:

float Round(double numerator, int decimal_places);

CP Lect 8 – slide 3 – Tuesday 10 October 2017

Global Variables

/* Declare a global variable. */

/* Notice this is outside a function. */

int i;

void print_i() {

/* i is accessible from any function */

printf("%d", i);

}

int main() {

/* i is accessible from any function */

i = 1;

print_i();

return EXIT_SUCCESS;

}

CP Lect 8 – slide 4 – Tuesday 10 October 2017

Global Variables Are Bad

int day;

int GetMonth() {

. . .

}

int main() {

day = 1;

GetMonth();

/* What does this print? */

printf("%d", day);

return EXIT_SUCCESS;

}

CP Lect 8 – slide 5 – Tuesday 10 October 2017

Global Variables Are Bad

int day;

int GetMonth() {

int month;

printf("Enter a day and month:");

scanf("%d %d", &day, &month);

return month;

}

int main() {

day = 1;

GetMonth();

/* What does this print? */

printf("%d", day);

return EXIT_SUCCESS;

}

CP Lect 8 – slide 5 – Tuesday 10 October 2017

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Global Variables Are Evil

� Global variables can be read/written from any system module
� In contrast, local variables only seen from a particular software module

� Excessive use of globals tends to compromise modularity
� Changes to code in one place affect other parts of code via the globals

� Think of it as data flow spaghetti

[Wulf 1973, pp. 28,32]
39

. .

.

11,528 global variables make Toyota cars unsafe
. . . what alternatives are there?

CP Lect 8 – slide 6 – Tuesday 10 October 2017

© Copyright 2014, Philip Koopman. CC Attribution 4.0 International license.

Global Variables Are Evil

� Global variables can be read/written from any system module
� In contrast, local variables only seen from a particular software module

� Excessive use of globals tends to compromise modularity
� Changes to code in one place affect other parts of code via the globals

� Think of it as data flow spaghetti

[Wulf 1973, pp. 28,32]
39

. .

.

11,528 global variables make Toyota cars unsafe
. . . what alternatives are there?

CP Lect 8 – slide 6 – Tuesday 10 October 2017

ReadDate function

int ReadDate() {

int day = ReadValue(31);

int month = ReadValue(12);

return /* Problem: we can't return both day and month. */ ;

}

Problem
We can’t return two ints.

CP Lect 8 – slide 7 – Tuesday 10 October 2017

ReadDate: try 2

Bad Code:

void ReadDate(int day, int month) {

day = ReadValue(31);

month = ReadValue(12);

}

Remember: arguments are copies. They won’t impact the caller.

Addresses are one way around this. . .

CP Lect 8 – slide 8 – Tuesday 10 October 2017

Addresses (also known as Pointers)

Computers keep variables at numbered addresses:

(Photo: Stacalusa, CC-0 license)

Idea: tell ReadDate to put day in box 0211 and month in 0224.

CP Lect 8 – slide 9 – Tuesday 10 October 2017

https://commons.wikimedia.org/wiki/File:Pigeon-hole_messagebox_2.jpg

Address of a Variable: &

int main() {

int i;

/* Print the address of i (the number on its box) */

printf("%p\n", &i);

return EXIT_SUCCESS;

}

New notation:
&i Address of i
%p Formatting for pointers aka addresses

CP Lect 8 – slide 10 – Tuesday 10 October 2017

Addresses can be Stored

int i;

/* This stores the address of i */

int* address_of_i = &i;

/* Print the same value (the address of i) twice: */

printf("%p\n", &i);

printf("%p\n", address_of_i);

Notation:
&i Address of i
%p Formatting for addresses

int* Type of an address to an int

CP Lect 8 – slide 11 – Tuesday 10 October 2017

Address Types

int* means an address to an int.
double* means an address to a double.
etc.

Good Code:

int i;

int* address_of_i = &i;

Good Code:

double value;

double* address_of_value = &value;

Bad Code:

double value;

double address_of_value = &value; /* Missing asterisk */

CP Lect 8 – slide 12 – Tuesday 10 October 2017

Using Addresses: *

Use * to access a variable at an address.

int i = 2;

int* address_of_i = &i;

Now i and *address of i are interchangeable (aliases).

/* Both print 2. */

printf("%d\n", *address_of_i);

printf("%d\n", i);

/* This is the same as i = 3. */

*address_of_i = 3;

/* Prints 3. */

printf("%d\n", i);

CP Lect 8 – slide 13 – Tuesday 10 October 2017

Using Addresses: *

Use * to access a variable at an address.

int i = 2;

int* address_of_i = &i;

Now i and *address of i are interchangeable (aliases).

/* Both print 2. */

printf("%d\n", *address_of_i);

printf("%d\n", i);

/* This is the same as i = 3. */

*address_of_i = 3;

/* Prints 3. */

printf("%d\n", i);

CP Lect 8 – slide 13 – Tuesday 10 October 2017

Using Addresses: *

Use * to access a variable at an address.

int i = 2;

int* address_of_i = &i;

Now i and *address of i are interchangeable (aliases).

/* Both print 2. */

printf("%d\n", *address_of_i);

printf("%d\n", i);

/* This is the same as i = 3. */

*address_of_i = 3;

/* Prints 3. */

printf("%d\n", i);

CP Lect 8 – slide 13 – Tuesday 10 October 2017

Another Example

int i = 2;

/* & takes the address of i. Then * goes there. */

*(&i) = 3;

/* prints 3 */

printf("%d\n", i);

Not terribly useful, but instructive.

CP Lect 8 – slide 14 – Tuesday 10 October 2017

Summarizing

Variables live in memory. Memory is like a bunch of post boxes.
=⇒ Every variable has a numbered address.

To get that address, we use &.
To access the value at an address, we use *.
We can remember addresses. int* stores an address to an int.

Three uses of the * symbol:
*address to i Access a variable at an address
int* Type of an address
i * j Multiply i by j

Puzzle:

What does puzzle(3) return?

CP Lect 8 – slide 15 – Tuesday 10 October 2017

Summarizing

Variables live in memory. Memory is like a bunch of post boxes.
=⇒ Every variable has a numbered address.

To get that address, we use &.
To access the value at an address, we use *.
We can remember addresses. int* stores an address to an int.

Three uses of the * symbol:
*address to i Access a variable at an address
int* Type of an address
i * j Multiply i by j

Puzzle:

What does puzzle(3) return?

CP Lect 8 – slide 15 – Tuesday 10 October 2017

Summarizing

Variables live in memory. Memory is like a bunch of post boxes.
=⇒ Every variable has a numbered address.

To get that address, we use &.
To access the value at an address, we use *.
We can remember addresses. int* stores an address to an int.

Three uses of the * symbol:
*address to i Access a variable at an address
int* Type of an address
i * j Multiply i by j

Puzzle:

int puzzle(int j) {

int* i = &j;

return j**i;

}

What does puzzle(3) return?

CP Lect 8 – slide 15 – Tuesday 10 October 2017

Summarizing

Variables live in memory. Memory is like a bunch of post boxes.
=⇒ Every variable has a numbered address.

To get that address, we use &.
To access the value at an address, we use *.
We can remember addresses. int* stores an address to an int.

Three uses of the * symbol:
*address to i Access a variable at an address
int* Type of an address
i * j Multiply i by j

Puzzle:

int puzzle(int j) {

int* i = &j;

return j * (*i);

}

What does puzzle(3) return?

CP Lect 8 – slide 15 – Tuesday 10 October 2017

Useful for Multiple Values

Good Code:

void ReadDate(int* address_of_day, int* address_of_month) {

*address_of_day = ReadValue(31);

*address_of_month = ReadValue(12);

}

int main() {

int day, month;

ReadDate(&day, &month);

printf("You entered %d of %d", day, month);

return EXIT_SUCCESS;

}

Question: Aren’t Arguments Copied?
Answer: yes, the addresses are copied.

CP Lect 8 – slide 16 – Tuesday 10 October 2017

Useful for Multiple Values

Good Code:

void ReadDate(int* address_of_day, int* address_of_month) {

*address_of_day = ReadValue(31);

*address_of_month = ReadValue(12);

}

int main() {

int day, month;

ReadDate(&day, &month);

printf("You entered %d of %d", day, month);

return EXIT_SUCCESS;

}

Question: Aren’t Arguments Copied?

Answer: yes, the addresses are copied.

CP Lect 8 – slide 16 – Tuesday 10 October 2017

Useful for Multiple Values

Good Code:

void ReadDate(int* address_of_day, int* address_of_month) {

*address_of_day = ReadValue(31);

*address_of_month = ReadValue(12);

}

int main() {

int day, month;

ReadDate(&day, &month);

printf("You entered %d of %d", day, month);

return EXIT_SUCCESS;

}

Question: Aren’t Arguments Copied?
Answer: yes, the addresses are copied.

CP Lect 8 – slide 16 – Tuesday 10 October 2017

Addresses: Reach Into Another Environment

The program has one giant set of post boxes.
A function can access any of them. . . but needs the address.

CP Lect 8 – slide 17 – Tuesday 10 October 2017

Dangling Addresses

Bad Code:

int *Dangerous() {

int i;

return &i;

}

Remember from Lecture 7:
When a function returns, its environment is destroyed, including i.

Told the postman the box is unused, but somebody still has the address.

CP Lect 8 – slide 18 – Tuesday 10 October 2017

Summary: Escaping the Environment

Global Variables
Easy to use initially
Hard to know what a function does:

void ReadDate();

Addresses
Requires thinking about postboxes.
Explicitly documents what a function can do:

void ReadDate(int* day, int* month);

CP Lect 8 – slide 19 – Tuesday 10 October 2017

Following Up

For Functions in general:
‘A Book on C’, Sections 5.1-5.6
(please ignore the comments on ‘traditional C’ and C++)

For pointers:
‘A Book on C’, Sections 6.1-6.3

CP Lect 8 – slide 20 – Tuesday 10 October 2017

