Computer Programming: Skills & Concepts (CP1)
Functions Il (Parameters, & and *)

13th October, 2015

CP Lect 8 — slide 1 — 13th October, 2015



Last lecture, this lecture

Yesterday (Monday 12th Oct)
» Functions.
» Examples of simple functions.

» Program structure and the program environment.

Today (Tuesday 13th Oct)
» Rules for declaring functions.
» “Scope” of a variable.
» Parameter-passing in C

» “Pointers”, &, *.
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Declaring functions, revisited

Functions must be declared before use.

» But the body of the function does not have to be part of this initial
declaration.

You might prefer to read (and write) programs ‘top-down'’:
high-level structure first, coding details later.
» compiler only needs the function header to check it's correctly used;
» so declare the header first (before anywhere the function is called),
then define the body of function later (e.g. after the main program).
The header is called a function prototype or a type declaration.
» All the header files like stdlib.h and descartes.h contain
function prototypes, not code.

» The #include for these header files is deliberately right at the top
of the program file.
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Example: SumTo again
#include <stdlib.h>

#include <stdio.h>
int SumTo(int n);

int main(void) {
int n;
printf ("The integer n, please: ");
scanf ("%d",&n) ;
printf ("sum = %d\n", SumTo(n));
return EXIT_SUCCESS;

}

int SumTo(int n) { /* computes 1 + 2+ ... + n */
int i, sum =0;
for (i =1; i <=n; ++i) {
sum = sum + 1i;
+

return sum;

+
CP Lect 8 — slide 4 — 13th October, 2015



|dentifiers are optional in prototypes

#include <stdlib.h>
#include <stdio.h>

int SumTo(int) ; /* NO NAME NEEDED FOR THE PARAMETER HERE */

int main(void) {
int n;
printf ("The integer n, please: ");
scanf ("%d",&n) ;
printf("sum = %d\n", SumTo(n));
return EXIT_SUCCESS;

t

int SumTo(int n) { /* NAME DEFINITELY NEEDED HERE */
int 1, sum =0;
for (i = 1; i <=mn; ++i) {
sum = sum + 1;
+

return sum;
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Scope

“Scope” refers to the program sections where a (particular) variable is

active/valid:
» global variables are defined above the main function (or indeed any
functions) and are valid everywhere.
» Unless the name of a global variable is re-used for a local one
somewhere.
» Local variables are defined within a function and are only valid

within that function.
» main is also a function: its variables are only valid there.

» The scope of local variables overshadows the scope of global
variables with the same name
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Scope Example

#include <stdio.h>
#include <stdlib.h>
int a = 0;

void f(int n) {
int i=0; i =

+

i+ 1; n=n+ 1;

int main(void) {
int 1 = 0, n = 0;
printf ("Checkpoint A: i = %d, n
f(n);

printf ("Checkpoint B: i = %d, n =

return EXIT_SUCCESS;

SCOPE of variables in printfs?

%d and a

%d and a

%d\n", i, n, a);

%d\n", i, n, a);
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Environment of first Scope Example
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Scope Example 2. (Spot the difference!)

#include <stdio.h>
#include <stdlib.h>
int a =0, i =0, n=0;

void f(int n) {
j_=

int 1=0; i+1;, n=n+1; a=a+1;

}

int main(void)

{
printf ("Checkpoint A: i = %d, n = %d and a = /d\n", i, n, a);
f(n);

printf ("Checkpoint B: i = %d, n = %d and a
return EXIT_SUCCESS;

%d\n", i, n, a);

SCOPE of variables in printfs?
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Environment of second Scope Example
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A closer look at parameters

» We have a function declared (and coded) of type
int SumTo(int n)

» We can make calls to this function, eg
SumTo (i+2)

» What is the relation between the formal parameter n and the actual
parameter i+2 ?

In C, there is only one way to pass the actual parameter into the real one:
call by value - remember discussion in Lecture 7.

This applies to several parameters just as well as to one — each parameter
is treated separately.
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Call by value

Again, consider int SumTo(int n) being called as SumTo (i+2).

» The actual parameter is an expression of a certain type (int here).

» The formal parameter is a variable of the same type.

How a function call is evaluated wrt call-by-value:

» The actual parameter is evaluated to yield a value of the specified
type. (Whatever the value of i+2 is.)

» The formal parameter is initialised to that value.
(the formal parameter is a local variable of the function body.)

» The function body is executed.

» When return is reached, control passes to the point immediately
after the function call, and the return value becomes the value of
the function call.

Key point: actual parameters are evaluated to values (int, float etc.)
before the function is executed, and the function sees only the values.
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Changing variables by function calls

The function only sees the value of parameters.
So how can we write a function to swap the values of two variables?

void swap(int a, int b) {
int temp;
temp = Db;
b = a;
a = temp;

int main(void) {
int x = 3, y = 5;

swap(x,y);
printf("x is now %d and y is now %d\n",x,y);

return EXIT_SUCCESS;
}

does NOT work! _
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The magic of & and *

C has a way to use the address of a variable (the numbered label of the
box for that variable) as a value.

If x 1s a variable, &x is its address.
If a i1s an address, *a means “what is stored at” that address.

And we can store addresses in variables (of type int *).

int x =5; /* x 1s an int */
int * a; /* a 1is the address of an int */
a = &x; /* Let a have the value of x’s address x*/

This defines and assigns an int called x, defines a “pointer” called a, and
assigns the value of a to be the address of x.
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The magic of & and *

int x =5; /* x is an int */
int * a; /* a is the address of an int */
a = &x; /* Let a have the value of x’s address x*/

After executing the above lines, then assigning to *a is the same as
assigning to x and evaluating *a is the same as evaluating x.

A sane language would say type &int instead of type int *.
C programmers usually write int *a; rather than int * a;

Variables of type int * are called pointers to integers. Other pointer
variables might be float * etc.
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The magic of & and * - Environment
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Swapping variables with & and *

void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

+

int main(void) {
int 1 =1, j = 2;
printf ("Checkpoint A: i = %d and j = %d.\n", i, j);
swap (&i, &j);
printf ("Checkpoint B: i = %d and j = %d.\n", i, j);
return EXIT_SUCCESS;

t

Using the combination of & and * we achieve the effect of call by reference
— allowing the function to get at the variable itself, not just its value.
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Swapping with & and * - Environment
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Overview: Uses of & and *

int *p;
Definition of a pointer variable
p = &a;
Take the address of a and store in the pointer variable p
int b = *p;

Dereference p: Store in b the value of the variable that
pointer variable p points to.
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Following Up

For Functions in general:
“A Book on C", Sections 5.1-5.6
(please ignore the comments on “traditional C" and C++)

For pointers:
“A Book on C", Sections 6.1-6.3
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