Computer Programming: Skills & Concepts (CP1)
Functions Il (Parameters, & and *)

13th October, 2015

CP Lect 8 — slide 1 — 13th October, 2015

Last lecture, this lecture

Yesterday (Monday 12th Oct)
» Functions.
» Examples of simple functions.

» Program structure and the program environment.

Today (Tuesday 13th Oct)
» Rules for declaring functions.
» “Scope” of a variable.
» Parameter-passing in C

» “Pointers”, &, *.

CP Lect 8 — slide 2 — 13th October, 2015

Declaring functions, revisited

Functions must be declared before use.

» But the body of the function does not have to be part of this initial
declaration.

You might prefer to read (and write) programs ‘top-down'’:
high-level structure first, coding details later.
» compiler only needs the function header to check it's correctly used;
» so declare the header first (before anywhere the function is called),
then define the body of function later (e.g. after the main program).
The header is called a function prototype or a type declaration.
» All the header files like stdlib.h and descartes.h contain
function prototypes, not code.

» The #include for these header files is deliberately right at the top
of the program file.

CP Lect 8 — slide 3 — 13th October, 2015

Example: SumTo again
#include <stdlib.h>

#include <stdio.h>
int SumTo(int n);

int main(void) {
int n;
printf ("The integer n, please: ");
scanf ("%d",&n) ;
printf ("sum = %d\n", SumTo(n));
return EXIT_SUCCESS;

}

int SumTo(int n) { /* computes 1 + 2+ ... + n */
int i, sum =0;
for (i =1; i <=n; ++i) {
sum = sum + 1i;
+

return sum;

+
CP Lect 8 — slide 4 — 13th October, 2015

|dentifiers are optional in prototypes

#include <stdlib.h>
#include <stdio.h>

int SumTo(int) ; /* NO NAME NEEDED FOR THE PARAMETER HERE */

int main(void) {
int n;
printf ("The integer n, please: ");
scanf ("%d",&n) ;
printf("sum = %d\n", SumTo(n));
return EXIT_SUCCESS;

t

int SumTo(int n) { /* NAME DEFINITELY NEEDED HERE */
int 1, sum =0;
for (i = 1; i <=mn; ++i) {
sum = sum + 1;
+

return sum;

¥ CP Lect 8 — slide 5 — 13th October, 2015

Scope

“Scope” refers to the program sections where a (particular) variable is

active/valid:
» global variables are defined above the main function (or indeed any
functions) and are valid everywhere.
» Unless the name of a global variable is re-used for a local one
somewhere.
» Local variables are defined within a function and are only valid

within that function.
» main is also a function: its variables are only valid there.

» The scope of local variables overshadows the scope of global
variables with the same name

CP Lect 8 — slide 6 — 13th October, 2015

Scope Example

#include <stdio.h>
#include <stdlib.h>
int a = 0;

void f(int n) {
int i=0; i =

+

i+ 1; n=n+ 1;

int main(void) {
int 1 = 0, n = 0;
printf ("Checkpoint A: i = %d, n
f(n);

printf ("Checkpoint B: i = %d, n =

return EXIT_SUCCESS;

SCOPE of variables in printfs?

%d and a

%d and a

%d\n", i, n, a);

%d\n", i, n, a);

CP Lect 8 — slide 7 — 13th October, 2015

Environment of first Scope Example

e _,\Scepe I (stide 1)
lactial Environment e) zﬁll Pf‘l.ﬂt‘

(obal!
n 3rqr | (l\g‘l‘po&& ‘3:4::0,0\:0,633

B] &
Ny d){Aﬁt?rﬂd'O‘

'y ¢ printf [&,n, local €O 'mam aishes, ks ' ar_'z_.)
¢ AR 2

{
a 3(;5*\‘ o accessible local !
Eheckpm.:\b A:(=0,n=0, a0 g'\:\,"‘;?z::e ‘ " '@ '
b) CAct € fin) - -
3t (¢
(L Cn s tocal, value ©) (c) After $0)is run, —_ -
- = — -\ ﬁ ‘—/—_\ Afcer "ﬂO)..
| T ” | (oD 2 i
. : 0) mibeal X)
' ﬂ environmeat’ \ ' { ¢ @ @ o * ‘?(fofa((
N (input param) n | Porone=r
’ intbralized b\, \ ’ l\@ ED n S (lou\\)
u\l\‘ valwe (o), input
' - + mtbialised by) ‘ S pParameter
¢ declavation in £.7 4

Scope Example 2. (Spot the difference!)

#include <stdio.h>
#include <stdlib.h>
int a =0, i =0, n=0;

void f(int n) {
j_=

int 1=0; i+1;, n=n+1; a=a+1;

}

int main(void)

{
printf ("Checkpoint A: i = %d, n = %d and a = /d\n", i, n, a);
f(n);

printf ("Checkpoint B: i = %d, n = %d and a
return EXIT_SUCCESS;

%d\n", i, n, a);

SCOPE of variables in printfs?

CP Lect 8 — slide 8 — 13th October, 2015

Environment of second Scope Example

-

— Sup 1 (stide 8)
'n*.(\‘ e'\\f urenMan

= c.h«\ €) 2*° printt
B vers Checkpoint R: ¢c=20,A=0, 033
mnaia; '
ro d) After,
e - — —)fem praheg "
s (
09 3¢ prmt[- (ina alt 3“'"’"0 enwr:::\ut‘
5 discorded
(l\eckpeu\(' A: Ls0nzso0, a-j

b)CALL €o ()

0 e p ® R
co.«, n m..uug‘f:“‘ 'T\f'i‘or';w-*) o) Apter FO) i rua. _
= nttee "
“QoV imittal : ‘ has ___——qu’\ed
environmeat " local
LIy ﬁn\ | beaks
:‘m::;u'::efk ’ slobq(
OI'OM&" .So ‘ n N
u\ohu‘ltfd b \ ‘ cocde

lo¢ (¢ decla m\ r~efer &
ol f rase \ local variables

A closer look at parameters

» We have a function declared (and coded) of type
int SumTo(int n)

» We can make calls to this function, eg
SumTo (i+2)

» What is the relation between the formal parameter n and the actual
parameter i+2 ?

In C, there is only one way to pass the actual parameter into the real one:
call by value - remember discussion in Lecture 7.

This applies to several parameters just as well as to one — each parameter
is treated separately.

CP Lect 8 — slide 9 — 13th October, 2015

Call by value

Again, consider int SumTo(int n) being called as SumTo (i+2).

» The actual parameter is an expression of a certain type (int here).

» The formal parameter is a variable of the same type.

How a function call is evaluated wrt call-by-value:

» The actual parameter is evaluated to yield a value of the specified
type. (Whatever the value of i+2 is.)

» The formal parameter is initialised to that value.
(the formal parameter is a local variable of the function body.)

» The function body is executed.

» When return is reached, control passes to the point immediately
after the function call, and the return value becomes the value of
the function call.

Key point: actual parameters are evaluated to values (int, float etc.)
before the function is executed, and the function sees only the values.

CP Lect 8 — slide 10 — 13th October, 2015

Changing variables by function calls

The function only sees the value of parameters.
So how can we write a function to swap the values of two variables?

void swap(int a, int b) {
int temp;
temp = Db;
b = a;
a = temp;

int main(void) {
int x = 3, y = 5;

swap(x,y);
printf("x is now %d and y is now %d\n",x,y);

return EXIT_SUCCESS;
}

does NOT work! _
CP Lect 8 — slide 11 — 13th October, 2015

The magic of & and *

C has a way to use the address of a variable (the numbered label of the
box for that variable) as a value.

If x 1s a variable, &x is its address.
If a i1s an address, *a means “what is stored at” that address.

And we can store addresses in variables (of type int *).

int x =5; /* x 1s an int */
int * a; /* a 1is the address of an int */
a = &x; /* Let a have the value of x’s address x*/

This defines and assigns an int called x, defines a “pointer” called a, and
assigns the value of a to be the address of x.

CP Lect 8 — slide 12 — 13th October, 2015

The magic of & and *

int x =5; /* x is an int */
int * a; /* a is the address of an int */
a = &x; /* Let a have the value of x’s address x*/

After executing the above lines, then assigning to *a is the same as
assigning to x and evaluating *a is the same as evaluating x.

A sane language would say type &int instead of type int *.
C programmers usually write int *a; rather than int * a;

Variables of type int * are called pointers to integers. Other pointer
variables might be float * etc.

CP Lect 8 — slide 13 — 13th October, 2015

The magic of & and * - Environment

* speafic addresses .) .
will be d‘.ﬂ’e""‘t DecloraEions of Varwables / Pointers [for shide ‘3)

for difereat runs (and addresses where Ghey are stored)

— m memory

S ——

, ink x=S, /",‘,& voriwable ¥)
\ ik & a; /*'po,;\ee,.' o .’n&"/l —>

—_—

oxTfFfbc 733 Fc¢

N‘n
Qa
O TffFubc 7830 ([onrFFf yberseeo
L, oddresSof o Tiugt “junkc” address
kself . even %5 “J:’“.-M.-fed
h iised.

Peinker vars indeial
hoave wdd esses.

A= ,Qx.;, n
! Ox?fffebec 783fc | T
] wn_¥
assign. Eo eh ~.> a
3):;:& .'p.? “uis; - OXWffabc?83F0 [oxTffebc 283 fe
ofF voriable x* now has address

°F X vertable,

T —— e, S——
e

;Pﬂ'l'\e(-("a has Volue ZP’ Po."_fs éo vq(t\e ‘/04.\'\’ Qa, i-a); {

:::) a has value ox‘léﬂ-qbdasfg pm’o\Es e valne 5,

Swapping variables with & and *

void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

+

int main(void) {
int 1 =1, j = 2;
printf ("Checkpoint A: i = %d and j = %d.\n", i, j);
swap (&i, &j);
printf ("Checkpoint B: i = %d and j = %d.\n", i, j);
return EXIT_SUCCESS;

t

Using the combination of & and * we achieve the effect of call by reference
— allowing the function to get at the variable itself, not just its value.

CP Lect 8 — slide 14 — 13th October, 2015

Swapping with & and * - Environment

SN“PP‘."fJ Variables [fw S{vde li)

a) Inik tl Envivonment

“main" oxffeyedborc [T "¢ "
oxfffuvedbors 55"

cake value o “adclress of¢"

and bthat 8 in put Pafcmctfr-

—
y . .
b> After .‘—“ﬁ':‘a swap (@’@\'ce (;\(&ernﬁ"'l.ve view

Swap(ox'lfﬂ-%‘fedbmc, 0"7“""

Envircnmenl affev call

[on 7FHeuedbolc] v
OIfffFeuedbol T35

edb oct)

oxVfffeuedafes

OxTfffyyedafe 0 [ontfiFuved borg

“
OxIftFevedborc _J @ (locad) inpuk

a and b ore

Parame ben

e vgué (ddn&SGS)

OxTFf wyedaf ds

N~

€ copied
%6 opd besed,

eemp

temp i3 incHall

wninibializEd .

Overview: Uses of & and *

int *p;
Definition of a pointer variable
p = &a;
Take the address of a and store in the pointer variable p
int b = *p;

Dereference p: Store in b the value of the variable that
pointer variable p points to.

CP Lect 8 — slide 15 — 13th October, 2015

Following Up

For Functions in general:
“A Book on C", Sections 5.1-5.6
(please ignore the comments on “traditional C" and C++)

For pointers:
“A Book on C", Sections 6.1-6.3

CP Lect 8 — slide 16 — 13th October, 2015

