
Computer Programming: Skills & Concepts (CP1)
Functions II (Parameters, & and *)

13th October, 2015

CP Lect 8 – slide 1 – 13th October, 2015

Last lecture, this lecture

Yesterday (Monday 12th Oct)

I Functions.

I Examples of simple functions.

I Program structure and the program environment.

Today (Tuesday 13th Oct)

I Rules for declaring functions.

I “Scope” of a variable.

I Parameter-passing in C

I “Pointers”, &, *.

CP Lect 8 – slide 2 – 13th October, 2015

Declaring functions, revisited

Functions must be declared before use.

I But the body of the function does not have to be part of this initial
declaration.

You might prefer to read (and write) programs ‘top-down’:
high-level structure first, coding details later.

I compiler only needs the function header to check it’s correctly used;

I so declare the header first (before anywhere the function is called),
then define the body of function later (e.g. after the main program).

The header is called a function prototype or a type declaration.

I All the header files like stdlib.h and descartes.h contain
function prototypes, not code.

I The #include for these header files is deliberately right at the top
of the program file.

CP Lect 8 – slide 3 – 13th October, 2015

Example: SumTo again
#include <stdlib.h>
#include <stdio.h>

int SumTo(int n);

int main(void) {
int n;
printf("The integer n, please: ");
scanf("%d",&n);
printf("sum = %d\n", SumTo(n));
return EXIT_SUCCESS;

}

int SumTo(int n) { /* computes 1 + 2+ ... + n */
int i, sum =0;
for (i = 1; i <= n; ++i) {

sum = sum + i;
}
return sum;

}

CP Lect 8 – slide 4 – 13th October, 2015

Identifiers are optional in prototypes
#include <stdlib.h>
#include <stdio.h>

int SumTo(int); /* NO NAME NEEDED FOR THE PARAMETER HERE */

int main(void) {
int n;
printf("The integer n, please: ");
scanf("%d",&n);
printf("sum = %d\n", SumTo(n));
return EXIT_SUCCESS;

}

int SumTo(int n) { /* NAME DEFINITELY NEEDED HERE */
int i, sum =0;
for (i = 1; i <= n; ++i) {

sum = sum + i;
}
return sum;

} CP Lect 8 – slide 5 – 13th October, 2015

Scope

“Scope” refers to the program sections where a (particular) variable is
active/valid:

I global variables are defined above the main function (or indeed any
functions) and are valid everywhere.

I Unless the name of a global variable is re-used for a local one
somewhere.

I Local variables are defined within a function and are only valid
within that function.

I main is also a function: its variables are only valid there.

I The scope of local variables overshadows the scope of global
variables with the same name

CP Lect 8 – slide 6 – 13th October, 2015

Scope Example

#include <stdio.h>
#include <stdlib.h>
int a = 0;

void f(int n) {
int i=0; i = i + 1; n = n + 1; a = a + 1;

}

int main(void) {
int i = 0, n = 0;
printf("Checkpoint A: i = %d, n = %d and a = %d\n", i, n, a);
f(n);
printf("Checkpoint B: i = %d, n = %d and a = %d\n", i, n, a);
return EXIT_SUCCESS;

}

SCOPE of variables in printfs?

CP Lect 8 – slide 7 – 13th October, 2015

Environment of first Scope Example

Scope Example 2. (Spot the difference!)

#include <stdio.h>
#include <stdlib.h>
int a = 0, i = 0, n = 0;

void f(int n) {
int i=0; i = i + 1; n = n + 1; a = a + 1;

}

int main(void)
{

printf("Checkpoint A: i = %d, n = %d and a = %d\n", i, n, a);
f(n);
printf("Checkpoint B: i = %d, n = %d and a = %d\n", i, n, a);
return EXIT_SUCCESS;

}

SCOPE of variables in printfs?

CP Lect 8 – slide 8 – 13th October, 2015

Environment of second Scope Example

A closer look at parameters

I We have a function declared (and coded) of type
int SumTo(int n)

I We can make calls to this function, eg
SumTo(i+2)

I What is the relation between the formal parameter n and the actual
parameter i+2 ?

In C, there is only one way to pass the actual parameter into the real one:
call by value - remember discussion in Lecture 7.

This applies to several parameters just as well as to one – each parameter
is treated separately.

CP Lect 8 – slide 9 – 13th October, 2015

Call by value

Again, consider int SumTo(int n) being called as SumTo(i+2).

I The actual parameter is an expression of a certain type (int here).

I The formal parameter is a variable of the same type.

How a function call is evaluated wrt call-by-value:

I The actual parameter is evaluated to yield a value of the specified
type. (Whatever the value of i+2 is.)

I The formal parameter is initialised to that value.
(the formal parameter is a local variable of the function body.)

I The function body is executed.

I When return is reached, control passes to the point immediately
after the function call, and the return value becomes the value of
the function call.

Key point: actual parameters are evaluated to values (int, float etc.)
before the function is executed, and the function sees only the values.

CP Lect 8 – slide 10 – 13th October, 2015

Changing variables by function calls

The function only sees the value of parameters.
So how can we write a function to swap the values of two variables?

void swap(int a, int b) {
int temp;
temp = b;
b = a;
a = temp;

}

int main(void) {
int x = 3, y = 5;
swap(x,y);
printf("x is now %d and y is now %d\n",x,y);
return EXIT_SUCCESS;

}

does NOT work!
CP Lect 8 – slide 11 – 13th October, 2015

The magic of & and *

C has a way to use the address of a variable (the numbered label of the
box for that variable) as a value.

If x is a variable, &x is its address.

If a is an address, *a means “what is stored at” that address.

And we can store addresses in variables (of type int *).

int x =5; /* x is an int */
int * a; /* a is the address of an int */
a = &x; /* Let a have the value of x’s address */

This defines and assigns an int called x, defines a “pointer” called a, and
assigns the value of a to be the address of x.

CP Lect 8 – slide 12 – 13th October, 2015

The magic of & and *

int x =5; /* x is an int */
int * a; /* a is the address of an int */
a = &x; /* Let a have the value of x’s address */

After executing the above lines, then assigning to *a is the same as
assigning to x and evaluating *a is the same as evaluating x.

A sane language would say type &int instead of type int *.

C programmers usually write int *a; rather than int * a;

Variables of type int * are called pointers to integers. Other pointer
variables might be float * etc.

CP Lect 8 – slide 13 – 13th October, 2015

The magic of & and * - Environment

Swapping variables with & and *

void swap(int *a, int *b) {
int temp = *a;
*a = *b;
*b = temp;

}

int main(void) {
int i = 1, j = 2;
printf("Checkpoint A: i = %d and j = %d.\n", i, j);
swap(&i, &j);
printf("Checkpoint B: i = %d and j = %d.\n", i, j);
return EXIT_SUCCESS;

}

Using the combination of & and * we achieve the effect of call by reference
– allowing the function to get at the variable itself, not just its value.

CP Lect 8 – slide 14 – 13th October, 2015

Swapping with & and * - Environment

Overview: Uses of & and *

int *p;
Definition of a pointer variable

p = &a;
Take the address of a and store in the pointer variable p

int b = *p;
Dereference p: Store in b the value of the variable that
pointer variable p points to.

CP Lect 8 – slide 15 – 13th October, 2015

Following Up

For Functions in general:
“A Book on C”, Sections 5.1-5.6
(please ignore the comments on “traditional C” and C++)

For pointers:
“A Book on C”, Sections 6.1-6.3

CP Lect 8 – slide 16 – 13th October, 2015

