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Summary of Lecture 5

I if statements

I boolean conditions

I nested if

I refinements of quadratic.c
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This Lecture

I Precedence of operators.

I The while statement.

I The for statement.

I fibonacci.c
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A note about operator precedence

In everyday mathematics, when we write 4 + 5 × 3, we expect it to mean
4 + (5 × 3), not (4 + 5) × 3.

C does the same: every operator has a precedence, and brackets are
automatically understood around higher precedence expressions: * has
higher precedence than +, so 4 + 5 * 3 means what you think.

Higher precedence means “gets done first”.

We suggest that you only rely on the following:

I *, / and % have higher precedence than + and -

I arithmetic operators have higher precedence than relational
operators

and everywhere else, use brackets to make clear what you mean.
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while

We have already seen our primary programming construct for branching
(doing different things based on the result of a test). This is the if. . . else
statement.

In programming, we also need need to repeat some action many times
until we’ve reached a suitable stopping point. The while-statement
allows us to specify this behaviour.

while ( condition ) {

statement-sequence
}

while means “repeat until failure” (of condition).
statement-sequence will usually alter some variables involved in condition.
Why?
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Printing a table

Early computers were used for printing mathematical tables. Consider
printing a table of squares from 1 to 20:

#include <stdlib.h>

#include <stdio.h>

int main(void) {

int n=1;

while (n <= 20) {

printf("The square of %4d is %4d.\n", n, n*n);

n = n+1;

}

return EXIT_SUCCESS;

}

The %4d in the printf means
‘print as an integer and pad on
the left with spaces to fill up 4
columns’. We’ll see other fancy
stuff with printf later.
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Fibonacci Numbers

0 1

0 + 1 = 1

1 + 1 = 2

1 + 2 = 3

2 + 3 = 5

3 + 5 = 8

5 + 8 = 13

8 + 13 =21
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Solving Fibonacci with while

I We need to keep adding the two previous Fibonacci numbers ‘while’
we are ≤ than n

I We will need a variable (call it count) to keep track of our ‘current
Fibonacci’.

I Our condition for the while-statement will compare count with n

Need to stop after we have reached the Fibonacci number for n.

I The starting values are 0 (0th Fibonacci number) and 1 (1st
Fibonacci number)
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fibonacci.c

int main(void) {

int n, next, count;

int previous = 0; /* Fibonacci 0 */

int current = 1; /* Fibonacci 1 */

...

/* before here, n has been set to the bound */

count = 2;

while (count <= n) {

next = previous + current; // eg. 2nd fib is = 0 + 1

previous = current;

current = next; // current is reset:

count++;

}

printf("Fibonacci %d is %d\n", n, current);

return EXIT_SUCCESS;

}
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running fibonacci.c

: ./a.out

Calculate which Fibonacci number? 1

Fibonacci 1 is 1

: ./a.out

Calculate which Fibonacci number? 2

Fibonacci 2 is 1

: ./a.out

Calculate which Fibonacci number? 7

Fibonacci 7 is 13
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while-statement: Repeat n-times

initialise-iterator
while ( not-iterator-endpoint ) {

work-on-this-value
next-iterator-value

}

It is very common to use while to perform some statements depending on
i for all values of i up to some integer limit (as we did for fibonacci.c).
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while-statement

Counting-up:

count = 0;

while (count < n) { could also write count != n

statement-sequence;
count++;

}

Counting-down:

count = n;

while (count > 0 ) {

statement-sequence;
count--;

}

Careful about ‘fencepost errors’: counting up by initializing iterator to 0

and looping while < n does loop n times with values 0, 1, ..., n-1.
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The for-loop

Counting up with a for-loop:

for (count = 0; count < n; count++) {

statement-sequence
}

The general form is:

for ( init-expression ; condition ; update-expression ) {

statement-sequence
}

which is the same as (apart from one small detail)

init-expression ;

while ( condition ) {

statement-sequence
update-expression ;

}

We’ve told the same little lie about general forms as we told with the if-
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Fibonacci using for

int n, next, count;

... // set n to the required Fibonacci number

int previous = 0; /* Fibonacci 0 */

int current = 1; /* Fibonacci 1 */

for (count = 2; count <= n; count++) {

next = previous + current;

previous = current;

current = next;

// current now the count-th Fibonacci

}

// on leaving loop current is now n-th Fibonacci

What is the value of count after finishing the loop?
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Prime Numbers

Definition: A prime number is any natural number greater than 1 which
has no factors except itself and 1.

Prime: 3, 7, 11

Not Prime: 9 (3 · 3), 10 (2 · 5)

Simple test for primes:

n is prime if n > 1 and there is no integer k
between 2 and sqrt(n) such that n % k = 0.

The while and for statements are good candidates for writing a
prime-testing program prime.c
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Reading

For precedence of operators, read Section 2.9 of “A Book on C”.

Sections 4.8 (while) and 4.9 (for) of “A Book on C”.

There will be some loop-based programing exercises in labsheet 3.
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