
Computer Programming: Skills & Concepts (CP)
Loops

Cristina Alexandru

Tuesday 3 October 2017

CP Lect 6 – slide 1 – Tuesday 3 October 2017

Summary of Lecture 5

I if statements

I boolean conditions

I nested if

I refinements of quadratic.c

CP Lect 6 – slide 2 – Tuesday 3 October 2017

This Lecture

I Precedence of operators.

I The while statement.

I The for statement.

I fibonacci.c

CP Lect 6 – slide 3 – Tuesday 3 October 2017

A note about operator precedence

In everyday mathematics, when we write 4 + 5 × 3, we expect it to mean
4 + (5 × 3), not (4 + 5) × 3.

C does the same: every operator has a precedence, and brackets are
automatically understood around higher precedence expressions: * has
higher precedence than +, so 4 + 5 * 3 means what you think.

Higher precedence means “gets done first”.

We suggest that you only rely on the following:

I *, / and % have higher precedence than + and -

I arithmetic operators have higher precedence than relational
operators

and everywhere else, use brackets to make clear what you mean.

CP Lect 6 – slide 4 – Tuesday 3 October 2017

while

We have already seen our primary programming construct for branching
(doing different things based on the result of a test). This is the if. . . else
statement.

In programming, we also need need to repeat some action many times
until we’ve reached a suitable stopping point. The while-statement
allows us to specify this behaviour.

while (condition) {

statement-sequence
}

while means “repeat until failure” (of condition).
statement-sequence will usually alter some variables involved in condition.
Why?

CP Lect 6 – slide 5 – Tuesday 3 October 2017

Printing a table

Early computers were used for printing mathematical tables. Consider
printing a table of squares from 1 to 20:

#include <stdlib.h>

#include <stdio.h>

int main(void) {

int n=1;

while (n <= 20) {

printf("The square of %4d is %4d.\n", n, n*n);

n = n+1;

}

return EXIT_SUCCESS;

}

The %4d in the printf means
‘print as an integer and pad on
the left with spaces to fill up 4
columns’. We’ll see other fancy
stuff with printf later.

CP Lect 6 – slide 6 – Tuesday 3 October 2017

Fibonacci Numbers

0 1

0 + 1 = 1

1 + 1 = 2

1 + 2 = 3

2 + 3 = 5

3 + 5 = 8

5 + 8 = 13

8 + 13 =21

CP Lect 6 – slide 7 – Tuesday 3 October 2017

Solving Fibonacci with while

I We need to keep adding the two previous Fibonacci numbers ‘while’
we are ≤ than n

I We will need a variable (call it count) to keep track of our ‘current
Fibonacci’.

I Our condition for the while-statement will compare count with n

Need to stop after we have reached the Fibonacci number for n.

I The starting values are 0 (0th Fibonacci number) and 1 (1st
Fibonacci number)

CP Lect 6 – slide 8 – Tuesday 3 October 2017

fibonacci.c

int main(void) {

int n, next, count;

int previous = 0; /* Fibonacci 0 */

int current = 1; /* Fibonacci 1 */

...

/* before here, n has been set to the bound */

count = 2;

while (count <= n) {

next = previous + current; // eg. 2nd fib is = 0 + 1

previous = current;

current = next; // current is reset:

count++;

}

printf("Fibonacci %d is %d\n", n, current);

return EXIT_SUCCESS;

}

CP Lect 6 – slide 9 – Tuesday 3 October 2017

running fibonacci.c

: ./a.out

Calculate which Fibonacci number? 1

Fibonacci 1 is 1

: ./a.out

Calculate which Fibonacci number? 2

Fibonacci 2 is 1

: ./a.out

Calculate which Fibonacci number? 7

Fibonacci 7 is 13

CP Lect 6 – slide 10 – Tuesday 3 October 2017

while-statement: Repeat n-times

initialise-iterator
while (not-iterator-endpoint) {

work-on-this-value
next-iterator-value

}

It is very common to use while to perform some statements depending on
i for all values of i up to some integer limit (as we did for fibonacci.c).

CP Lect 6 – slide 11 – Tuesday 3 October 2017

while-statement

Counting-up:

count = 0;

while (count < n) { could also write count != n

statement-sequence;
count++;

}

Counting-down:

count = n;

while (count > 0) {

statement-sequence;
count--;

}

Careful about ‘fencepost errors’: counting up by initializing iterator to 0

and looping while < n does loop n times with values 0, 1, ..., n-1.

CP Lect 6 – slide 12 – Tuesday 3 October 2017

The for-loop

Counting up with a for-loop:

for (count = 0; count < n; count++) {

statement-sequence
}

The general form is:

for (init-expression ; condition ; update-expression) {

statement-sequence
}

which is the same as (apart from one small detail)

init-expression ;

while (condition) {

statement-sequence
update-expression ;

}

We’ve told the same little lie about general forms as we told with the if-
statement. CP Lect 6 – slide 13 – Tuesday 3 October 2017

Fibonacci using for

int n, next, count;

... // set n to the required Fibonacci number

int previous = 0; /* Fibonacci 0 */

int current = 1; /* Fibonacci 1 */

for (count = 2; count <= n; count++) {

next = previous + current;

previous = current;

current = next;

// current now the count-th Fibonacci

}

// on leaving loop current is now n-th Fibonacci

What is the value of count after finishing the loop?

CP Lect 6 – slide 14 – Tuesday 3 October 2017

Prime Numbers

Definition: A prime number is any natural number greater than 1 which
has no factors except itself and 1.

Prime: 3, 7, 11

Not Prime: 9 (3 · 3), 10 (2 · 5)

Simple test for primes:

n is prime if n > 1 and there is no integer k
between 2 and sqrt(n) such that n % k = 0.

The while and for statements are good candidates for writing a
prime-testing program prime.c

CP Lect 6 – slide 15 – Tuesday 3 October 2017

Reading

For precedence of operators, read Section 2.9 of “A Book on C”.

Sections 4.8 (while) and 4.9 (for) of “A Book on C”.

There will be some loop-based programing exercises in labsheet 3.

CP Lect 6 – slide 16 – Tuesday 3 October 2017

