
Computer Programming: Skills & Concepts (CP)
arithmetic, if and booleans (cont)

Cristina Alexandru

Monday 2 October 2017

CP Lect 5 – slide 1 – Monday 2 October 2017

Last Lecture

I Arithmetic

I Quadratic equation problem: ax2 + bx + c = 0

I Floating point data

CP Lect 5 – slide 2 – Monday 2 October 2017

Today’s lecture

I Solving quadratic with if-statements

I General form of the if-statement

I Boolean tests (using relational operators)

I What about degenerate quadratics?

I Refining quadratic.c

CP Lect 5 – slide 3 – Monday 2 October 2017

Choice of variables for quadratic.c

I We will need to compute the square-root of b2 − 4ac.

I The sqrt function available in the math library for C is of the type
double sqrt (double x);

I For this simple reason we use double variables for our real roots.

I Precision is not really important to us, at least not now.

CP Lect 5 – slide 4 – Monday 2 October 2017

C program to Solve Quadratic Equations

x =
−b ±

√
b2 − 4ac

2a
.

Steps of our program:

I Take in the inputs a, b and c from the user (scanf).
Need three int variables to store these values: a, b, c say;

I test whether b2 − 4ac is non-negative.
What we do will depend on the result of the test

I If negative, output a message about “No real roots”.
I If exactly 0, a repeated root.
I Otherwise, two differing roots as per formula.

I Get the square root of b2 − 4ac (if non-negative).

I Output both roots (or one if repeated).

I return EXIT_SUCCESS;

CP Lect 5 – slide 5 – Monday 2 October 2017

body of quadratic.c

int s = (b*b - 4*a*c);

if (s < 0) {

printf("No real roots to this quadratic.\n");

} else if (s == 0) {

printf("Eq. has the repeated root %f.\n", -(double)b/(2.0*a));

} else {

x1 = (-(double)b - sqrt(s))/(2.0*a);

x2 = (-(double)b + sqrt(s))/(2.0*a);

printf("The sols to %dx^2 +%dx +%d = 0 are ", a, b, c);

printf("%lf and %lf.\n", x1, x2);

}

Note: sqrt() takes a double argument, so the int expression s is
automatically promoted to a double in sqrt(s).
Question: is the cast (double)b necessary?

CP Lect 5 – slide 6 – Monday 2 October 2017

Running quadratic.c

quadratic.c (and the refinements of this program) uses the sqrt

function from the math library.

note: Not enough to include <math.h> in the code.

I <math.h> is just a header file for the math library (it explains the
“shape” of the sqrt function, and other math functions).

I To run our program, we need to link to executable code for the
math functions.

I Link by adding -lm to gcc command when compiling:
gcc -Wall quadratic.c -lm

I -lm is ‘minus ell m’, NOT ‘minus one m’.

CP Lect 5 – slide 7 – Monday 2 October 2017

Assumptions :-(

We made some assumptions for quadratic.c

I By solving a quadratic, we (implicitly) assumed a is non-zero.

I Same for b.

I We might have had a linear or constant equation.

SOLUTION - use the (general) if statement.

CP Lect 5 – slide 8 – Monday 2 October 2017

if statement – general form

if (condition1) {

statement-sequence1
}

else if (condition2) {

statement-sequence2
}

...

else {

statement-sequencen
}

I condition1, . . ., conditionn−1 are all boolean expressions: either true
or false.

I statement-sequence1, . . ., statement-sequencen are all sequences of
C-programming statements.

I Note that it is possible to use if alone without any else branch.

CP Lect 5 – slide 9 – Monday 2 October 2017

Warning about if

If you look in the textbooks, you will see that when the statement-sequence
has only one statement, you can miss out the curly brackets round it:
if (t > 0)

x = x + 1;

else

x = x - 1;

We recommend that you don’t do this (at least until you’re experienced
enough to understand when you can ignore our advice!).

You will see it in other people’s programs though.

Actually, we lied about the general form of the if statement. In truth, the
general form is
if (condition) statement1 else statement2
and a statement can have the form { statement-sequence }

or can be an if-statement itself. However, the form on the previous slide is the
way we typically use it, so best to ‘learn’ that.

CP Lect 5 – slide 10 – Monday 2 October 2017

Relational operators

What kind of conditions can we use in if statements?
Assume e1 and e2 are (usually arithmetic) expressions . . .
We can apply relational operators to form a boolean expression.

e1 == e2 e1 equal to e2
e1 != e2 e1 not equal to e2
e1 < e2 e1 less than e2
e1 <= e2 e1 less than or equal to e2
e1 > e2 e1 greater than e2
e1 >= e2 e1 greater than or equal to e2.

Never write e1 < e2 < e3
it is legal C, but it doesn’t mean anything like what you think it means –

if you remember to -Wall, the compiler will warn you if you do this!

note: We can compare float and double expressions in this way - but
only int comparisons are fully reliable. Why is this?

CP Lect 5 – slide 11 – Monday 2 October 2017

More complicated Boolean expressions

Assume e1 and e2 are boolean expressions . . .
Can build more complicated boolean expressions iteratively, using boolean
operators.

0 false (always)
non-zero true (always)
!e1 true if e1 is false
e1 && e2 true if (e1 is true and e2 is true)
e1 || e2 true if (e1 is true or e2 is true)

For example, can write (e1 < e2) && (e2 < e3).
The expressions e1, e2 are (formally) integer expressions.
We define boolean variables as int.
Think of integers as (informally) acting as boolean ‘type’.

CP Lect 5 – slide 12 – Monday 2 October 2017

Boolean expressions in if-else statements

We have seem lots of simple and complex boolean expressions: whenever
any of these are used as tests in a if-else statement, they must be
enclosed in parentheses.
For example

I The simple Boolean expression x < 5+z, when being used as a test
for an else if-branch of an if-else statement, would appear as

else if (x < 5+z) { . . . }

I The complex Boolean expression (a != 0) && (b*b > 4*a*c),
when being used as the test for the if branch of an if-else
statement, would appear as

if ((a != 0) && (b*b > 4*a*c)) { . . .}

CP Lect 5 – slide 13 – Monday 2 October 2017

Nested if-statements

I The statement-sequence place-holder in the general if-statement
allows other if-statements to be part of the program fragment.

I This is a ‘nested’ use of the if-statement.

I Example – refine the quadratic.c program further to include a
solution for the a = 0 case (given a linear equation).

CP Lect 5 – slide 14 – Monday 2 October 2017

Improving quadratic.c

Issues for improving quadratic:

(i) make our quadratic solver cope with a = 0 (quadratic2.c)
. . . and with a = 0, b = 0.

(ii) complex roots (homework).

CP Lect 5 – slide 15 – Monday 2 October 2017

quadratic equations – what if a = 0

If ax2 + bx + c = 0 is a quadratic, and a is 0, then we have a linear
equation:

bx + c = 0

This has . . .

I Exactly one root of value −c/b, if b 6= 0.

I No root at all, if b = 0 and c 6= 0.

I Everything is a root, if b = c = 0.

Can incorporate this case into our code:

CP Lect 5 – slide 16 – Monday 2 October 2017

quadratic2.c – header and input code

Start off as before ...

#include <stdio.h>

#include <stdlib.h>

#include <math.h> // Need to include math.h to use sqrt.

int main(void) {

int a, b, c, s;

double x1, x2;

printf("Input the x^2 co-efficient a: ");

scanf("%d", &a);

printf("Input the x co-efficient b: ");

scanf("%d", &b);

printf("Input the constant term c: ");

scanf("%d", &c);

s = b*b - 4*a*c;

CP Lect 5 – slide 17 – Monday 2 October 2017

quadratic2.c – a != 0 versus a == 0

if (a != 0) {

if (s < 0) { /* THIS (a != 0) */

... /* BRANCH IS */

} /* EXACTLY WHAT */

else if (s == 0) { /* WE PUT FOR THE */

... /* BODY OF */

} /* quadratic.c */

else {

...

}

}

else { /* THIS WILL BE THE */

... /* SOLUTION FOR a==0 */

} /* (linear equations) */

return EXIT_SUCCESS;

We need to complete the else (a being 0) branch.

CP Lect 5 – slide 18 – Monday 2 October 2017

quadratic2.c – all cases

if (a != 0) {

if (s < 0) {

... // code from quadratic.c

}

}

else if (b != 0) { /* a==0 WITH b NON-ZERO */

x1 = -((double)c)/((double)b);

printf("1 sol to %dx^2 +%dx +%d = 0.\n", a, b, c);

printf("It is %lf.\n", x1);

}

else if (c != 0) { /* a AND b BOTH ZERO, c NON-ZERO */

printf("No sols to %dx^2 + %dx +%d = 0.\n", a, b, c);

}

else { /* a, b, c ALL ZERO */

printf("Degenerate equation - everything is a solution!\n");

}

return EXIT_SUCCESS;

}

CP Lect 5 – slide 19 – Monday 2 October 2017

Reading and Working

Relevant sections of “A book on C” are Sections 4.1, 4.2, 4.3, 4.4 (on
Boolean expressions, Relational operators, etc) and Section 4.7 (on the
if and the if-then-else statements).

You already have the week 3 Tutorial sheet.
Please attempt all Questions before your tutorial group.
Also please think of one question about the CP material so far, and bring
that question to the tutorial.

How about coding up quadratic2.c?
Could make quadratic3.c by also doing complex roots.

CP Lect 5 – slide 20 – Monday 2 October 2017

