Computer Programming: Skills & Concepts (CP)
Variables and ints

C. Alexandru

25 September 2017

CP Lect 3 — slide 1 — 25 September 2017

v

v

v

Week 1 Lectures

Structure of the CP course
What is programming?
> Imperative Programming?
» C programming?
‘recipe’ analogy to imperative programming.
‘Hello World’ in detail.

CP Lect 3 — slide 2 — 25 September 2017

v

v

v

v

Today's lecture

Variables and change-of-state
Our Squaring program
Finding the maximum.

Updating/Assigning variables

CP Lect 3 — slide 3 — 25 September 2017

Variables

» For most computational tasks, the result (or output) will depend on
some Input
» hello.c was unusual (no input, always does the same thing);
» The mypoem.c program you write in your first lab is similarly unusual.
» If we read input, we need to store it somewhere to keep a record of
its value.

We store inputs in objects called Variables. The word ‘Variable'
means ‘changing’ — no fixed value; like a blackboard or slate
where we can store one value, and change it later.

CP Lect 3 — slide 4 — 25 September 2017

Program Environment in general

' .
mam

S&ovnjg :] x Dj

AN o o

[L) [l

o } Furcteo nS
____ (mnnbe)

input

In this environment we have two variables x and y.
They are shown as being un-initialized (no particular value).

CP Lect 3 — slide 5 — 25 September 2017

Variables and Imperative programming

» Imperative programming ie carried out as a sequence of step-by-step
commands;

» Some commands will fetch input, some will send output, most
commands will change the state of the program environment by
changing a variable;

» Variables can appear in a few ways:

(i)

(i)

>

At the start of a command, with an =, for example:

X = ...

This is an assignment command, used to put a value (whatever
appears on the right) into the variable x.

Combined inside some other expression like:

.. (x+2)%4... OR ...6xx-3...

This is an evaluation of the expression, where the value of x is looked
up and used in evaluation.

Evaluation in C is done as call-by-value (more later)

CP Lect 3 — slide 6 — 25 September 2017

Defining variables

» Usually have one variable for each ‘piece’ of input.
» May have other variables besides the variables storing inputs.

» May want/need to give names to (and store) important quantities;
» May be helpful to store certain quantities for re-use;
» As the computational problems get more complex/interesting, more
necessity for interesting choice of variables.
In C, and most other programming languages, variables must have a
fixed type (more later ...).

In C, a variable name starts with a letter, and can be made up of
letters (a—z, A-Z), digits (0-9) and underscores (_).

Actually, it can also start with _, but by convention this is only done for
‘private’ variables that are internal to a particular code package.

CP Lect 3 — slide 7 — 25 September 2017

Squaring a Number

input: Ask the user to input a (integer) number.
problem-solving: Compute the square of the integer.

output: Tell the user what the squared value is.

We will need at least one variable, to store the number input, because
this value ‘varies’. We will choose to have an extra variable to store the
squared value.

CP Lect 3 — slide 8 — 25 September 2017

Variables for square.c

Must declare variables in advance of using them.

int x, y;

Variable declaration is terminated by a semi-colon.

» Says “Make two integer variables x and y available for computation
(in the program environment).”

» Called a declaration (not a command).

» Declaration must come before the variable is ever used in a
command (and preferably just inside the start of main)

CP Lect 3 — slide 9 — 25 September 2017

Input with scanf

scanf is the twin of printf. Reads numbers from input and stores them
in variables.

But scanf requires a “&" before its arguments.
(Explanation later in the course. . . for now it's just magic.)

For example:

int x, y;
scanf ("%d", &x);

CP Lect 3 — slide 10 — 25 September 2017

Doing the Squaring

The scanf ("%d", &x); statement will read the user-provided value
into the variable x.

We need to compute the value of this number squared.
The expression x*x represents the value of x squared.

We can store this squared value in the variable y using an
assignment command

y = X*X;

Then squared value is ready to print out.

CP Lect 3 — slide 11 — 25 September 2017

square.c

#include <stdlib.h>
#include <stdio.h>

int main(void) {
int x;
int y;
printf ("Input the integer: ");
scanf ("%4d", &x);
y = X*X;
printf ("The square of Jd is %d.\n", x, y);
return EXIT_SUCCESS;

CP Lect 3 — slide 12 — 25 September 2017

Program Environment for square.c

CP Lect 3 — slide 13 — 25 September 2017

Program Environment for square.c cont.

(e

CP Lect 3 — slide 14 — 25 September 2017

Finding the Maximum

input: Ask the user for two integers, one at a time.
problem-solving: Find the larger of the two integers.

output: Output the larger of the two.

We will need at least two variables, to store the inputs.

CP Lect 3 — slide 15 — 25 September 2017

Variables and scanf for Maximum

Declare variables in advance of using them.

int x, y, m;

» Says “Make three integer variables x, y and m available for
computation (in the program environment).”

Now we can store values in them.

int x, y, m;
scanf ("%d", &x);
scanf ("%d", &y);

CP Lect 3 — slide 16 — 25 September 2017

MAX of two integer variables

if (x > y) {
m= X;
} else {
m =1y,
}
printf ("MAX is %d: ", m);
» (x > y) is the condition to be evaluated. It evaluates to True only
if x is larger than y.

> where did we get the values x and y?

CP Lect 3 — slide 17 — 25 September 2017

max.cC

#include <stdlib.h>
#include <stdio.h>

int main(void) {
int x, y, m;
printf ("Input the two integers: ");
scanf ("%d", &x);
scanf ("7d", &y);
if (x> y) {
m = x;
} else {
m=y;
}
printf ("MAX is %d: ", m);
return EXIT_SUCCESS;

CP Lect 3 — slide 18 — 25 September 2017

Variables in C

Variables are “boxes” to store a value

» A C variable holds a single value;
» Have to define what type of item a variable will hold, eg:
int x; or maybe int x = 2;

» In C, the value can change over time as a result of program
statements which act on the variable, eg:
X =x + 1;

CP Lect 3 — slide 19 — 25 September 2017

Updating Variables

int n; < n is declared — but not given a value!
n =2 %*n; < n is doubled (from what? ERROR)
n = 9; < n gets the value 9

n=n+1; < n gets the value 9+1, i.e. 10
n=22%*mn+ 1; < n gets the value 7

CP Lect 3 — slide 20 — 25 September 2017

The Assignment Statement

A variable is updated by an assignment statement
n=22xn+ 1;

The left-hand side n is the variable being updated.
The right-hand side 22 * n + 1 is an expression for the new value.
First compute the expression, then change the variable to the new value.

CP Lect 3 — slide 21 — 25 September 2017

Reading Assignment

Note: Reading assignments point out the sections in our recommended
book that discuss what we've done in the lecture. If you're using a
different book, then find the appropriate section in it. If you're not using
a book, and want more info, google some keywords!

Read sections 1.1, 1.2, 1.3, 1.5 and 1.6 (all in Chapter 1) of “A Book on
C" (skip 1.4).

CP Lect 3 — slide 22 — 25 September 2017

