
Computer Programming: Skills & Concepts (CP)
Files in C

Julian Bradfield

Tuesday 21 November 2017

CP–20 – slide 1 – Tuesday 21 November 2017



Today’s lecture

I Character oriented I/O (revision)

I Files and streams

I Opening and closing files
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Idiom for character-oriented I/O

int c;

while ((c = getchar()) != EOF) {

/* Code for processing the character c */

}
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File length

int c;

int length = 0;

while ((c = getchar()) != EOF) {

length++;

}

printf("File length is %d\n", length);

Don’t forget to initialise length, i.e. the length = 0 part.
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Copying a file

int c;

while ((c = getchar()) != EOF) {

putchar(c);

}

Note that putchar(c) is equivalent to printf("%c", c)
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Copying a file, checking for errors

int c;

while ((c = getchar()) != EOF) {

/* The manual says putchar returns the character written,

or EOF on error (e.g. disk full) */

if ( putchar(c) == EOF ) {

perror("error writing file");

exit(1);

}

}

perror is a standard library function that prints your message to standard
error, together with a message describing the system error that was
encountered, for example
error writing file: No space left on device
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Example: Count occurrences of uppercase letters

int main(void) {

int c, countu;

countu = 0;

while ((c = getchar()) != EOF) {

if (isupper(c)) {

countu++;

}

}

printf("%d uppercase letters\n", countu);

}
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The Unix I/O model

An executing program has a standard input, a standard output, and a
standard error.

We’ve been using these – they’re all usually the terminal.

getchar(), putchar(), printf() etc. all use standard input/output.
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Unix file redirection

The Unix shell lets one specify the standard input, output and error for
the program:

I Input from a file: ./ftour < data50

I Output to a file: ./ftour > log

I Input and output redirection: ./ftour < data50 > log

I Input and output from/to a program (piping):
cat data50 | ./ftour | grep length
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Streams

In C we talk about input and output streams

I getchar() reads from the standard input stream

I putchar(ch) writes to the standard output stream

You might think of a stream as a file – but in practice, streams often end
at a keyboard, a window or another program.

It is more accurate to think of streams as connectors to files etc., which
hide the tricky details. (You don’t need to know whether your stream is a
file, terminal, network connection etc.)

CP–20 – slide 10 – Tuesday 21 November 2017



Standard Streams

All C programs begin with three standard streams

I stdin is read by getchar()

I stdout is written to by putchar(c)

I stderr is a second output stream, used by error message functions
(e.g. perror()).

These streams are defined in stdio.h.
Use stderr for error messages and debugging messages of your own.
This avoids mixing them up with normal output.
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Using named streams

All the standard I/O functions have a variant that has a named stream as
a parameter

fprintf(stdout, "Hello") ≡ printf("Hello")

putc(c, stdout) ≡ putchar(c)

getc(stdin) ≡ getchar()

Use the manual pages to find the variants!

Same idea as sscanf, sprintf for strings.
N.B. It’s very confusing that the stream comes first for most things, but
second for putc.
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Using named streams

int main(void) {

int c, prev = 0;

while ((c = getc(stdin)) != EOF) {

if (prev == 'i' && c == 'z') {

putc('s', stdout);

} else {

putc(c, stdout);

}

prev = c;

}

}
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Using new streams

Streams have the type FILE *. E.g.

FILE *stdin, *stdout, *stderr;

FILE *wordlist;

Streams do not always end in a file despite the name!
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Opening files

FILE *wordlist;

wordlist = fopen("wordlist.txt", "r");

if (wordlist == NULL) {

perror("Can't open wordlist.txt");

return EXIT_FAILURE;

}

/* To be completed */

fclose(wordlist);
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fopen()

FILE *fopen(const char *path, const char *mode)

Opens a stream for the file named path

I E.g. fopen("output.txt", "w");

I E.g. fopen("/usr/include/stdio.h", "r");

The mode selects read or write access

I This prevents accidents

I Anyway, you can’t write to a CD-Rom.

fopen() returns NULL on failure
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fopen() modes

"r": Open text file for reading

"w": Open text file for writing

"a": Open text file for appending

and several others . . .

What happens if the file exists already?
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Copying a File

FILE *in, *out;

in = fopen("wordlist.txt", "r");

out = fopen("copy.txt", "w");

while ((c = getc (in)) != EOF) {

putc(c, out);

}

fclose(in);

fclose(out);

We don’t really (normally) copy files one character at a time, because
it’s very inefficient. There are other functions (fread and fwrite) for
reading/writing many characters at once.
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fclose()

fclose() discards a stream

It is good practice to close streams when they are no longer needed, to
avoid operating system limits.

Exiting a program closes all streams.
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perror(): reporting errors

fopen() may return NULL for many reasons

I File not found

I Invalid path

I Permission denied

I Out of disk space

I Etc.

perror() prints an error related to the last failed system call, as we’ve
already shown.
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Buffering

(Most) streams are buffered: Text written to a stream may not appear
immediately.

fflush(FILE *stream)

forces the pending text on a stream to be written.

As does fclose(stream).

fprintf(stream, "\n");

Streams connected to terminals are usually flushed after each newline
character (and whenever you read from the terminal).
stderr is not buffered: a character appears as soon as written.
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Summary: Streams

Have the type FILE *

Programs start with three streams

I stdin

I stdout

I stderr
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Summary: New functions

fopen() – open a stream for a file

getc() – similar to getchar()

putc() – similar to putchar()

fprintf() – similar to printf()

fscanf() – similar to scanf()

fclose() – closes a stream

fflush() – flushes a buffer

perror() – reports an error in a system call
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