Computer Programming: Skills & Concepts (CP)
Characters

Ajitha Rajan

Monday 30 October 2017

CP Lect 13 — slide 1 — Monday 30 October 2017

Last lecture

» Practical programming

This lecture

» Robust input handling

» Characters in C

CP Lect 13 — slide 2 — Monday 30 October 2017

scanf — erroneous input

What if the user types a word, when an integer is required?
As already noted in tutorials:

Apart from the action performed by scanf (reading, or
attempting to read, the object of the specified type), scan
returns an integer, which is the number of input items assigned.
This may be fewer than provided for, or even zero, in the event
of a matching failure.

This returned value can be used to test for a successful read:
scanf ("%d", &a) ==

if and only if an integer was successfully read into a.

CP Lect 13 — slide 3 — Monday 30 October 2017

scanf — error-checking our input

Suppose we want to read in an integer to x:
We can test for success by saving the returned value of scanf:

read_succ = scanf("%d", &x);

if (read_succ == 1) {
} else {
}

What about the else branch?
» Print an error message and terminate?

» Can give the user a second try.

CP Lect 13 — slide 4 — Monday 30 October 2017

scanf error-checking — first attempt

printf ("Please input an integer: ");
read_succ = scanf("%d", &x);
if (read_succ == 1) {

}

else { /* read_succ must have been 0 */
printf("That wasn't an integer! Try again: ");
read_succ = scanf("%d", &x);

}

PROBLEM: Guaranteed to fail on error ...
WHY?

CP Lect 13 — slide 5 — Monday 30 October 2017

scanf error-checking — ‘skipping over’

scanf ("%*s") ; means ‘skip over’ first item in read-buffer from standard
input (the s is for ‘string’ (sequence of non-whitespace characters), the *
for ‘don't save').

printf("Please input an integer: ");
read_succ = scanf("%d", &x);

if (read_succ == 1) {

}

else { /* read_succ must have been 0 */
scanf ("%*s") ; /% scan the bad-input, don't save */

printf("That wasn't an integer! Try again: ");
read_succ = scanf("%d", &x);

CP Lect 13 — slide 6 — Monday 30 October 2017

scanf error-checking — loops

printf("Please input an integer: ");
read_succ = scanf("%d", &x);

if (read_succ '= 1) { /% read_succ must have been 0 */
while (read_succ '= 1) {
scanf ("%*s"); /* scan bad-input, don't try to save #*/

printf ("That wasn't an integer! Try again: ");
read_succ = scanf("%d", &x);
b
b

/* Now we definitely have an int; do the work */

Try it with the Fibonacci programs!

CP Lect 13 — slide 7 — Monday 30 October 2017

Characters

What is it that input handling is actually reading from the terminal? Not
integers, doubles, or whatever, but characters.

The various symbols ('A", 'a’, '0’, ';’, '@, etc) that you might find on the
keyboard, together with control characters such as "\n' (newline), all have
integer codes (ASCII).

These integers are rather small, so can be wasteful (but sometimes
necessary) to use a variable of type int to represent them.

CP Lect 13 — slide 8 — Monday 30 October 2017

The char type

The type char is like a small integer type, just big enough (a byte) to hold
the usual (in the 1970s) character set.

» Advantage of char over int: saves space. Is the type used in many
text-processing encodings.

» Disadvantage of char over int: cannot be used in certain situations
(as we'll see).

Oddly enough, 'a’, b, 'c’, etc., denote integer constants and not

characters.

CP Lect 13 — slide 9 — Monday 30 October 2017

Bytes and char

A byte is a binary number of length 8 (8 ‘bits’).

» 2 options for each bit = a byte can take on 28 = 256 possible values
(0 up to 255).

» This is enough to cover the English alphabet + other relevant
symbols ...

CP Lect 13 — slide 10 — Monday 30 October 2017

Bytes and char
A byte is a binary number of length 8 (8 ‘bits’).

» 2 options for each bit = a byte can take on 28 = 256 possible values
(0 up to 255).

» This is enough to cover the English alphabet + other relevant
symbols ...

If you want to play i, listen to hwswipnut, discuss the plays of
Aptotopdvng, or just ask somebody what their Erdés number is, you need
more. In the modern world, real characters have values up to 1114111 —
but the C char is still 8 bits. If you need to deal with non-ASCII, consult
a book or the Web!

CP Lect 13 — slide 10 — Monday 30 October 2017

Bytes and char

A byte is a binary number of length 8 (8 ‘bits’).

» 2 options for each bit = a byte can take on 28 = 256 possible values
(0 up to 255).

» This is enough to cover the English alphabet + other relevant
symbols ...

If you want to play i, listen to hwswipnut, discuss the plays of
Aptotopdvng, or just ask somebody what their Erdés number is, you need
more. In the modern world, real characters have values up to 1114111 —
but the C char is still 8 bits. If you need to deal with non-ASCII, consult
a book or the Web!

» The C char, like int and float, is a signed type, so actually takes
values from —128 to 127. Usually it's better to use unsigned char,
which really does take values 0 to 255.

CP Lect 13 — slide 10 — Monday 30 October 2017

Some char values

a’ |97 || ' |98 || 'Z' | 112
‘A" |65 || 'B" | 66| 'Z |90
0" | 48 || '1" |49 |9 |57
& [38| 'x" | 42| \n" | 10
32 N\a | 7 \r' | 13

" is the space character.
"\r' is the carriage return character.
"\a' is a special character that rings a belll

CP Lect 13 — slide 11 — Monday 30 October 2017

|/O with characters

» getchar(): returns the next character from the input stream
(could be characters typed at a keyboard, or read from a file). If the
end of the stream has been reached (user types CTRL/D or the end
of the file is reached) the special value EOF (which is —1 on most
systems, but always refer to it as EOF) is returned.

» putchar(c): writes the character ¢ to the output stream (could be
the screen, or another file).

These functions are included in <stdio.h>.
NOTE: getchar() returns an int, not a char ! This is so that it can
return all the possible unsigned chars as well as the value EOF.

CP Lect 13 — slide 12 — Monday 30 October 2017

Library functions

In addition, #include <ctype.h> gives us various functions on characters:

» isalpha(c): is ¢ alphabetic?

» isupper(c): is ¢ upper case?

» isdigit(c): is c a digit (0 to 9)7

» toupper(c): if c is a lower case letter, return the corresponding

upper case letter; otherwise return c.

... and several others: see Kelley and Pohl A.2, or the isalpha man-page.

CP Lect 13 — slide 13 — Monday 30 October 2017

Printing Roman numerals

void PrintNum(int n) {
while (n > 0) {

if (n >= 100) {

n=n - 100; putchar('C');
} else if (n >= 90) {

n =n + 10; putchar('X');
} else if (n >= 50) {

n =n - 50; putchar('L');
} else if (n >= 40) {

n=n + 10; putchar('X');
} else if (n >= 10) {

n=mn - 10; putchar('X');

CP Lect 13 — slide 14 — Monday 30 October 2017

else if (n >= 9) {

n=mn+1l;

putchar('I");

else if (n >= 5) {

n=mn- 5;

putchar('V');

else if (n >= 4) {

n=mn+1;
else {
n=mn-1;

putchar('I');

putchar('I');

CP Lect 13 — slide 15 — Monday 30 October 2017

Idiom for single character |/O

We can do a surprising amount by filling in the following template:

int c;

while ((c = getchar()) !'= EOF) {

/* Code for processing the character c. */
}
The while-loop condition is a bit tricky: it reads a character from the
input, assigns it to ¢ and tests whether the character is EOF (i.e., whether
we have reached the end of the input)!

CP Lect 13 — slide 16 — Monday 30 October 2017

Continuing the Roman theme: Caesar cypher
const int OFFSET = 13, NUMLETS = 26;
int ¢, ord; /* Why is c declared as int and not char? */
while ((c = getchar()) !'= EOF) {

c = toupper(c);
if (isupper(c)) {

ord = c - 'A'; /% Integer in range [0,25] *
ord = (ord + OFFSET) 7, NUMLETS; /* permute by offset */
c =ord + 'A'; /* back to char */

}

putchar(c);

CP Lect 13 - slide 17 — Monday 30 October 2017

Example: Letter frequencies

#define NUMLETS 26
int ¢, i, count[NUMLETS];

for (i = 0; i < NUMLETS; i++) count[i] = 0;
while ((c = getchar()) != EOF) {
c = toupper(c);
if (isupper(c)) {
i=c¢c- 'A',; /* Integer in [0,25] */
count [1]++;
}
}
for (i = 0; i < NUMLETS; i++) {
printf("%c: %d\n", i + 'A', count[i]);
}

CP Lect 13 — slide 18 — Monday 30 October 2017

Idiom for line-oriented /O

We can do a surprising amount by filling in the following template:

int c;

while ((c = getchar()) !'= EOF) {
if (¢ == "\n") {
/% Code for processing the line just read. */
} else {
/% Code for processing the character c. */
+
¥

CP Lect 13 — slide 19 — Monday 30 October 2017

Example: recording line lengths
int ¢, charCount = 0, lineCount = 0;

while ((c = getchar()) !'= EOF) {
if (¢ == '"\n') {
lineCount++;
printf(" [Line J%d has %d characters]\n",
lineCount, charCount);
charCount = 0;
} else {
charCount++;
putchar(c);
}
}

CP Lect 13 — slide 20 — Monday 30 October 2017

Input and output redirection

Suppose we have compiled a program, similar to the ones considered
earlier, and placed the resulting object code in the file prog (maybe done
by creating a Makefile and using make; or alternatively just by copying
a.out into prog).

By default, input is from the keyboard, and output is to the screen. So

» Typing ./prog in the shell window runs prog, with input being
taken from the keyboard, and output being written to the shell
window.

However, by extending the command, we may redirect input from the

keyboard to a nominated input file, and redirect the output from the screen
to a nominated output file.

CP Lect 13 — slide 21 — Monday 30 October 2017

» ./prog < data takes input from the file data, but continues to
send output to the shell window.

» ./prog > results takes input from the keyboard, but sends
output to the file results.

» ./prog < data > results takes input from the file data, and
sends output to the file results.

Reading material :)
Kelley and Pohl, subsections 3.2, 3.3 and 3.9

CP Lect 13 — slide 22 — Monday 30 October 2017

