Compiler Optimisation

9 — Program Transformations

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019

Introduction

This lecture:
@ Classification of program transformations - loop and array
@ Role of dependence
@ Loop restructuring - changing the number/type of loop
@ lteration reordering - reordering the iterations scanned.
@ Array transformations - data layout transformation

NB: Simplified presentation.
Large number of technicalities.
Read the book!

Introduction

What is a program transformation

@ A program transformation is a rewriting of the program such
that it has the same semantics

@ More conservatively, all data dependences must be preserved

@ Previous lectures looked at IR—IR transformations or
assembler—assembler transformations

@ Now, focus on transformations at higher level: source to
source transformations

@ Why: Only place where memory reference explicit. Key to
restructuring for memory behaviour and large scale parallelism.

Introduction

Transformation classification

Ongoing open question on a correct taxonomy

@ Loop
e Structure reordering. Change number of loops
o lteration reordering. Reorder loop traversal
o Linear models. Express transformation as uni-modular

matrices.

o Array
e Index reordering
o Duality with loops. Global vs Local.

@ All transformations have an associated legality test though

some a few are always legal.

Loop restructuring

Transformation: index splitting

@ A sequential loop with dependence [*] is transformed into two
independent parallel loops. Careful selection of split point.

@ Always a legal transformation. No test needed

Original
for(i = 1 to 100) for(i = 1 to 50)
a[101 - i] = a[lil a[101 - i] = ali]

Lots of dependences for(i = 51 to 100)

al101 - i] = a[il

@ Neither access in each loop refers to same memory location.

@ All of first loop must execute before second though - why?

Loop restructuring

Transformation: loop unrolling

@ Replicate loop body
@ Used for exploiting ILP
@ Always a legal transformation. No test needed

Original Unroll 3 times

for(i = 1 to 100) for(i = 1 to 100 step 3)
alil = 1 ali] =i
ali+1] = i+l
ali+2] = i+2

for(i = 100 to 100)
ali] = 1

@ Non-convex iteration space after transformation - steps
o Causes difficulties for dependence analysis.
@ Can normalise loop though

Loop restructuring

Transformation: loop distribution

@ Move loop statements into their own loops

for(i = 1 to 10)
ali] = S
= ali-1] S

4

for(i = 1 to 10)
ali] = S1

for(i = 1 to 10)
= al[i-1] S

y

Q2.

6f6

@ @ @) -

Loop restructuring

Transformation: loop distribution + statement reordering

@ Anti-dependences honoured

for(i = 1 to 10)
ali] = St
= al[i+1] S

4

for(i = 1 to 10)
= al[i+1] S

for(i = 1 to 10)
ali] = S

A\

3388
9DQ -

@@ @ -

Loop restructuring

Transformation: loop fusion

@ Inverse of loop distribution - needs compatible loops

Original
for(i = 1 to 100) for(i = 1 to 100)
ali] = ali] =
bl[i] =

for(j = 1 to 100)
bljl =

@ More difficult than distribution. Dependence constrains
application.

@ Used for increasing ILP and improving register use. Also for
fork /join based parallelisation.

@ Loops can be partly fused after pre-distribution

lteration reordering

Transformation: loop interchange

@ Switching the order of nested loops

@ Important widely used transformation

for(i = 1 to N)
for(j = 1 to N)
ali,jl=ali,j-1]+b[i]

vy

Interchanged

for(j = 1 to N)
for(i = 1 to N)
ali,jl=ali,j-1]1+b[i]

o’

o [ij] =]

Q000

0300 Te
QO Q-0

Q00O

lteration reordering

Transformation: loop interchange

@ Switching the order of nested loops
@ Important widely used transformation

for(i = 1 to N)
for(j = 1 to N)
ali,jl=ali-1,j+1]+b[i]

Interchanged

for(j = 1 to N)
for(i = 1 to N)

ali,jl=ali-1,j+11+b[i]

o [ij] =]

000 -0

@g\%b

o lllegal to interchange [1,-1], [<,>] why?

lteration reordering
Transformation: loop skewing
@ Used in wavefront parallelisation

for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

.

.

v

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

.
.

j

o

o [i] > [ij+1]
@ Equivalent to a change of basis.
@ Shifting by a constant referred to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

e Shifting by a constant referred

to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

e Shifting by a constant referred

to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

e Shifting by a constant referred

to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

e Shifting by a constant referred

to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

e Shifting by a constant referred

to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

&

@ Shifting by a constant referred to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

e Shifting by a constant referred

to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

&

@ Shifting by a constant referred to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,j]+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+
ali,j-i-1]

o [ij] > [ij +1]

@ Equivalent to a change of basis.

e Shifting by a constant referred

to as loop bumping

lteration reordering

Transformation: loop skewing
@ Used in wavefront parallelisation

Original
for(i = 1 to N)
for(j = 1 to N)
ali,jl = ali-1,jI1+
ali,j-1]

for(i = 1 to N)
for(j = i+l to i+N)
ali,j-i] = ali-1,j-i]+ :
ali,j-i-1] .

o [ij] = [i,j+1]
@ Equivalent to a change of basis.
@ Shifting by a constant referred to as loop bumping

lteration reordering

Transformation: loop reversal

@ Reverse loop direction

Original

for(i = 1 to N)
for(j = 1 to M) for(j = 1 to M)
ali,jl = ali,j-1]1+b[il ali,jl = ali,j-11+b[i]

for(i = N to 1 step -1)

@ Rarely used in isolation. In unison with previous two.

@ Can combine interchange, skewing and reversal as
uni-modular transformations.

lteration reordering
Transformation: loop tiling/blocking

o Break loop into rectangular tiles
e May increase locality (reduce cache misses)

Original

for(i = 1 to N)
for(j = 1 to M) for(j

for(i = 1 to N step si)
= 1 to M step sj)
for(ii = i to i+si-1)
for(jj = j to j+sj-1)
alii,jjl = alii,jjl+b[ii]

ali,jl = ali,jl+b[i]

@ Non-convex space
@ Interchange placing smaller strip-mine inside

Array layout transformations

@ Less extensive literature though perhaps have a more
significant impact

@ Loop transformations affect all memory references within the
loop but not elsewhere. Local in nature

@ Array and more generally data transformations have global
impact but do not affect other references to other arrays.

@ Array layout transformations are used to improve memory
access performance

@ Also form the basis for data distribution based parallelisation
schemes for distributed memory machines.

Array layout transformations

Transformation: global index reordering

@ Swap indices (transpose)

@ Dual of loop interchange

o [ijl =1l
Original Indices reordered
int a[10,20] int a[20,10]
for(i = 1 to 9) for(i = 1 to 9)
for(j = 2 to 20) for(j = 2 to 20)
ali,jl = ali+1,j-11+b[i] alj,il = alj-1,i+11+b[i]
al1,2] =0 al2,1] =0

@ Array declaration and subscripts interchanged globally
o Difficulties occur if array reshaped on procedure boundaries

Array layout transformations

Transformation: linearisation

e Map multidimensional array to fewer dimensions (mostly one)

@ Dual of loop linearisation

Original

int a[10,20]
for(i = 1 to 9)
for(j = 2 to 20)
ali,jl = ali+1l,j-11+b[il]
al1,2] =0

Linearised

int a[200]
for(i = 1 to 9)
for(j = 2 to 20)
al[20*(i-1)+j]l=a[20*i+j-
il+b[i]
al[2] =0

Array layout transformations

Transformation: padding

@ Increase one or more dimensions with redundant values

Padded by

int a[10,20] int a[17,20]
for(i = 1 to 9) for(i = 1 to 9)
for(j = 2 to 20) for(j = 2 to 20)
ali,jl = ali+1,j- ali,jl = ali+1,j-
11+b[il] 11+b[il]
al1,2] =0) al1,2] =0)

@ Frequently used to overcome cache conflicts. Very simple

@ Pad factor 7 in first index. Normally prime.

Unification

@ Presentation - simplistic conditions of application can be
complex for arbitrary programs.

o Little overall structure.

@ Uni-modular transformation theory based on linear
representation

o Extended to non-singular and the Unified Transformation
Framework of Bill Pugh.

@ Will return to look in more detail at this formulation in later
lectures.

Summary

Classification of program transformations - loop and array
Role of dependence
Loop restructuring - changing the number/type of loop

Iteration reordering - reordering the iterations scanned.

Array transformations - data layout transformation

PPar CDT Advert

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

* 4-year programme: Research topics in software,
MSc by Research + PhD hardware, theory and

application of:

» Parallelism

» Concurrency

» Distribution

« Research-focused:
Work on your thesis topic
from the start

Full funding available
« Collaboration between:
» University of Edinburgh’s
School of Informatics Industrial engagement
* Ranked top in the UK by programme includes
2014 REF internships at leading
» Edinburgh Parallel Computing companies
Centre
* UK's largest supercomputing
centre

A i
informatics

Research Council

