
Compiler Optimisation
9 – Program Transformations

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019

Introduction

This lecture:
Classification of program transformations - loop and array
Role of dependence
Loop restructuring - changing the number/type of loop
Iteration reordering - reordering the iterations scanned.
Array transformations - data layout transformation

NB: Simplified presentation.
Large number of technicalities.
Read the book!

Introduction
What is a program transformation

A program transformation is a rewriting of the program such
that it has the same semantics
More conservatively, all data dependences must be preserved
Previous lectures looked at IR→IR transformations or
assembler→assembler transformations
Now, focus on transformations at higher level: source to
source transformations
Why: Only place where memory reference explicit. Key to
restructuring for memory behaviour and large scale parallelism.

Introduction
Transformation classification

Ongoing open question on a correct taxonomy
Loop

Structure reordering. Change number of loops
Iteration reordering. Reorder loop traversal
Linear models. Express transformation as uni-modular
matrices.

Array
Index reordering
Duality with loops. Global vs Local.

All transformations have an associated legality test though
some a few are always legal.

Loop restructuring
Transformation: index splitting

A sequential loop with dependence [*] is transformed into two
independent parallel loops. Careful selection of split point.
Always a legal transformation. No test needed

Original
for(i = 1 to 100)

a[101 - i] = a[i]

Lots of dependences

Split at i = 51
for(i = 1 to 50)

a[101 - i] = a[i]

for(i = 51 to 100)
a[101 - i] = a[i]

Neither access in each loop refers to same memory location.
All of first loop must execute before second though - why?

Loop restructuring
Transformation: loop unrolling

Replicate loop body
Used for exploiting ILP
Always a legal transformation. No test needed

Original
for(i = 1 to 100)

a[i] = i

Unroll 3 times
for(i = 1 to 100 step 3)

a[i] = i
a[i+1] = i+1
a[i+2] = i+2

for(i = 100 to 100)
a[i] = i

Non-convex iteration space after transformation - steps
Causes difficulties for dependence analysis.
Can normalise loop though

Loop restructuring
Transformation: loop distribution

Move loop statements into their own loops
Original
for(i = 1 to 10)

a[i] = S1
= a[i-1] S2

Distributed
for(i = 1 to 10)

a[i] = S1

for(i = 1 to 10)
= a[i-1] S2

Loop restructuring
Transformation: loop distribution + statement reordering

Anti-dependences honoured
Original
for(i = 1 to 10)

a[i] = S1
= a[i+1] S2

Distributed
for(i = 1 to 10)

= a[i+1] S2

for(i = 1 to 10)
a[i] = S1

Loop restructuring
Transformation: loop fusion

Inverse of loop distribution - needs compatible loops

Original
for(i = 1 to 100)

a[i] =

for(j = 1 to 100)
b[j] =

Fused
for(i = 1 to 100)

a[i] =
b[i] =

More difficult than distribution. Dependence constrains
application.
Used for increasing ILP and improving register use. Also for
fork/join based parallelisation.
Loops can be partly fused after pre-distribution

Iteration reordering
Transformation: loop interchange

Switching the order of nested loops
Important widely used transformation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j]=a[i,j-1]+b[i]

Interchanged
for(j = 1 to N)

for(i = 1 to N)
a[i,j]=a[i,j-1]+b[i]

[i , j] 7→ [j , i]

Iteration reordering
Transformation: loop interchange

Switching the order of nested loops
Important widely used transformation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j]=a[i-1,j+1]+b[i]

Interchanged
for(j = 1 to N)

for(i = 1 to N)
a[i,j]=a[i-1,j+1]+b[i]

[i , j] 7→ [j , i]
Illegal to interchange [1,-1], [<,>] why?

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop skewing

Used in wavefront parallelisation

Original
for(i = 1 to N)

for(j = 1 to N)
a[i,j] = a[i-1,j]+

a[i,j-1]

Skewed
for(i = 1 to N)

for(j = i+1 to i+N)
a[i,j-i] = a[i-1,j-i]+

a[i,j-i-1]

[i , j] 7→ [i , j + i]
Equivalent to a change of basis.
Shifting by a constant referred to as loop bumping

Iteration reordering
Transformation: loop reversal

Reverse loop direction

Original
for(i = 1 to N)

for(j = 1 to M)
a[i,j] = a[i,j-1]+b[i]

Fused
for(i = N to 1 step -1)

for(j = 1 to M)
a[i,j] = a[i,j-1]+b[i]

[i , j] 7→ [−i , j]
Rarely used in isolation. In unison with previous two.
Can combine interchange, skewing and reversal as
uni-modular transformations.

Iteration reordering
Transformation: loop tiling/blocking

Break loop into rectangular tiles
May increase locality (reduce cache misses)

Original
for(i = 1 to N)

for(j = 1 to M)
a[i,j] = a[i,j]+b[i]

Tiled
for(i = 1 to N step si)

for(j = 1 to M step sj)
for(ii = i to i+si-1)

for(jj = j to j+sj-1)
a[ii,jj] = a[ii,jj]+b[ii]

Non-convex space
Interchange placing smaller strip-mine inside

Array layout transformations

Less extensive literature though perhaps have a more
significant impact
Loop transformations affect all memory references within the
loop but not elsewhere. Local in nature
Array and more generally data transformations have global
impact but do not affect other references to other arrays.
Array layout transformations are used to improve memory
access performance
Also form the basis for data distribution based parallelisation
schemes for distributed memory machines.

Array layout transformations
Transformation: global index reordering

Swap indices (transpose)
Dual of loop interchange
[i , j] 7→ [j , i]

Original
int a[10,20]
for(i = 1 to 9)

for(j = 2 to 20)
a[i,j] = a[i+1,j-1]+b[i]

a[1,2] = 0

Indices reordered
int a[20,10]
for(i = 1 to 9)

for(j = 2 to 20)
a[j,i] = a[j-1,i+1]+b[i]

a[2,1] = 0

Array declaration and subscripts interchanged globally
Difficulties occur if array reshaped on procedure boundaries

Array layout transformations
Transformation: linearisation

Map multidimensional array to fewer dimensions (mostly one)
Dual of loop linearisation

Original
int a[10,20]
for(i = 1 to 9)

for(j = 2 to 20)
a[i,j] = a[i+1,j-1]+b[i]

a[1,2] = 0

Linearised
int a[200]
for(i = 1 to 9)

for(j = 2 to 20)
a[20*(i-1)+j]=a[20*i+j-

i]+b[i]
a[2] = 0

Array layout transformations
Transformation: padding

Increase one or more dimensions with redundant values

Original
int a[10,20]
for(i = 1 to 9)

for(j = 2 to 20)
a[i,j] = a[i+1,j-

1]+b[i]
a[1,2] = 0

Padded by 7
int a[17,20]
for(i = 1 to 9)

for(j = 2 to 20)
a[i,j] = a[i+1,j-

1]+b[i]
a[1,2] = 0

Frequently used to overcome cache conflicts. Very simple
Pad factor 7 in first index. Normally prime.

Unification

Presentation - simplistic conditions of application can be
complex for arbitrary programs.
Little overall structure.
Uni-modular transformation theory based on linear
representation
Extended to non-singular and the Unified Transformation
Framework of Bill Pugh.
Will return to look in more detail at this formulation in later
lectures.

Summary

Classification of program transformations - loop and array
Role of dependence
Loop restructuring - changing the number/type of loop
Iteration reordering - reordering the iterations scanned.
Array transformations - data layout transformation

PPar CDT Advert

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

