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Introduction

This lecture:
Parallelism
Types of dependence flow, anti and output
Distance and direction vectors
Classification of loop based data dependences
Dependence tests: gcd, Banerjee and Omega
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Parallelism
Programming parallel computers

Schools of thought:
1 User specifies low-level parallelism and mapping
2 User specifies parallelism (e.g. skeletons) - system tunes

mapping
3 Compiler finds parallelism in sequential code

Popular approach is to break the transformation process into
stages
Transform to maximise parallelism i.e minimise critical path of
program execution graph
Map parallelism to minimise “significant” machine costs i.e.
communication/ non-local access etc.



Parallelism
Different forms of parallelism

Statement parallelism
a = b + c
d = e + f

Operation parallelism
a = (b + c) * (e + f)

Function parallelism
f(a) = if (a <= 1)

then return 0
else return

f(a-1)+f(a-2)

Loop parallelism
for(i = 1 to n)

A[i] = b[i] + c



Parallelism
Loop parallelism / Array parallelism

Original loop
for(i = 1 to n)

A[i] = b[i] + c

Parallel loop
parfor(i = 1 to n)

A[i] = b[i] + c

All iterations of the iterator i can be performed independently
Independence implies parallelism
Loop parallelism O(n) potential parallelism
Compare statement and operation parallelism - O(1).
Recursive parallelism rich but dynamic. Exploited in functional
computational models



Parallelism
Parallelism and data dependence

for(i = 1 to n)
A[i] = b[i] + c

Each iteration independent – completely parallel

for(i = 1 to n)
A[i+1] = A[i] + c

Each iteration dependent on previous – completely serial

Note: iterations NOT array elements



Parallelism
Parallelism and data dependence

Need to apply transformations and know when it is safe to do so

Reordering transformation
A reordering transformation is any program transformation that
only changes the execution order of statements without adding or
deleting statements

A reordering transformation that preserves every dependence,
preserves the meaning of the program

Parallelising loop iterations allows random interleaving (reordering)
of statements in loop body



Data dependence
Types of data dependence

Relationship between reads and writes to memory has critical
impact on parallelism
3 types of data dependence

Flow (True)
RAW hazard
S1: a =
S2: = a

Denoted S2 δ S1

Anti
WAR hazard
S1: = a
S2: a =

Denoted S2 δ−1 S1

Output
WAW hazard
S1: a =
S2: a =

Denoted S2 δ0 S1
Only data flow dependences are true dependences. Anti and
output can be removed by renaming



Dependence

Data-flow analysis can be used to define data dependences on
a per block level for scalars but fails in presence of arrays
Need finer grained analysis – determine if statements’ array
usage access same memory location and type of dependence



Dependence
Iteration vectors

Consider two loops:

for(i = 1 to n)
S A[i+1] = A[i] + b[i]

for(i = 1 to n)
S A[i+2] = A[i] + b[i]

In both cases, statement S depends on itself
However, there is a significant difference
Need formalism to describe and distinguish such dependences



Dependence
Iteration vectors

Iteration number
Each iteration in a loop has an iteration number which is the
value of the loop index at that iteration

Normalised iteration number
For iteration number i in loop with bounds L, U, and stride S, the
normalised iteration number isa

(I − L + S)/S

Convenient to normalise
aThis definition is one-based



Dependence
Iteration vectors

Iteration vectors extend this notion to loop nests

Iteration vector
Iteration vector I of iteration is the vector of integers containing
iteration numbers for loops in order of nesting level

for(i = 1 to 4)
for(j = 1 to 6)

S some-statement
Iteration vector, (2, 1) of S is when i = 2 and j = 1



Dependence
Iteration vectors

Iteration vectors for simple loop

for(i = 1 to 4)
for(j = 1 to 6)

S some-statement



Dependence
Iteration vector ordering

Iteration vectors ordered by execution order
For normalised vectors this is lexicographical ordering

Lexicographical ordering
For two iteration vectors, I and J ,
I < J iff

1 I[1 : n − 1] < J [1 : n − 1], or
2 I[1 : n − 1] = J [1 : n − 1] and In < Jn

I.e. compare < by first element, if = compare < next element, etc.

Why normalised?

Consider induction variable going backwards
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Dependence
Iteration vector ordering

Lexicographical ordering

for(i = 1 to 4)
for(j = 1 to 6)

S some-statement



Dependence
Dependencies between iterations

Loop-independent dependency
If statement S2 depends on S1 and S1,S2 execute in same iteration

Loop-carried dependency
If statement S2 depends on S1 and S1, S2 execute in different
iterations



Dependence
Dependencies between iterations

Dependence distance
If dependence is between iterations Iwrite and Iread ,
then distance is Iread − Iwrite

Distance example
Write A[10,11] at iteration (5, 5). Read A[10,11] at (5, 6).
Distance is?



Dependence
Dependencies between iterations

Dependence distance
If dependence is between iterations Iwrite and Iread ,
then distance is Iread − Iwrite

Distance example
Write A[10,11] at iteration (5, 5). Read A[10,11] at (5, 6).
Distance is (5, 6)− (5, 5) = (0, 1)



Dependence
Dependencies between iterations

If dependence distances all same, then say loop has that
dependence distance
But, loop may have many different dependence distances
Direction vector summarises directions
If first non ‘=’ element is ‘<’ then indicates flow dependence1

Dependence direction
Direction vector summary of
distance dimensions
i.e. per dimension

< All +ve
> All -ve
= All 0
* Mixed

Direction example
Given distances:

(0, 1,-1,-1)
(0, 2,-2, 0)
(0, 3,-3, 1)

Direction is: ?

(=, <, >, *)

1(Why?)
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Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S2 A[ i, j ] =
S2 = A[ i, j ] + 1



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S2 A[ i, j ] =
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Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ i, j ] + 1
Statement can depend on itself



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ j+10, i ] = A[ j+10, i ] + 1
Iterations, not array elements!



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ i, j - 1 ] + 1



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ i, j - 1 ] + 1



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j + 1 ] = A[ i, j ] + 1
Clearly the same thing



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ i, j - 2 ] + 1
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Dependencies between iterations

Where are dependences, distances, directions here?
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S A[ i, j ] = A[ i, j - 2 ] + 1



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ i - 1, j - 1 ] + 1



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ i - 1, j - 1 ] + 1



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ i, 1 ] + j



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ i, 1 ] + j



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ 3, 4 ] + i * j



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ 3, 4 ] + i * j



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ 0, 0 ]



Dependence
Dependencies between iterations

Where are dependences, distances, directions here?

for(i = 1 to 4)
for(j = 1 to 6)

S A[ i, j ] = A[ 0, 0 ]
There are none!



Dependence
Solving the dependence problem

Question: is there dependence between array write in S1 and
read in S2?

Assume write in iteration Iw , read in Ir

Assume write of A[fw (Iw )], read of A[fr (Ir )],
with fw and fr as polynomials
Solve fw (Iw )− fr (Ir ) = 0 for integer solutions
(inside iteration space)
This is diophantine equation2

Undecidable in general3,4

Limit to linear diophantine equations with constraints5

anx1 + an−1xn−1 + ...+ a1x1 + a0 = 0

2After Diophantus of Alexandria c. 210AD
3This is Hilberts tenth problem – set in 1900, proven in 1970
4Consider n ≥ 2, ∀a, b, c > 0; an + bn − cn 6= 0 (Fermat’s last theorem)
5Integer linear programming is NP-complete
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Dependence
Solving the dependence problem

Example
for(i = 1 to 100)

for(j = i to 100)
A[i, j+1] = A[i, j]

Let Iw = (iw , jw ) and Ir = (ir , jr )
Let fw (iw , jw ) =

(iw , jw + 1) and fr (ir , jr ) =(ir , jr )
First constrain induction variables

1 ≤ iw ≤ 100, iw ≤ jw ≤ 100,
1 ≤ ir ≤ 100, ir ≤ jr ≤ 100

Constraints so fw (iw , jw ) = fr (ir , ir )

iw = ir , jw + 1 = jr

Are there integer solutions for iw , jw , ir , jr ?Yes, lots:

1 ≤ iw = ir ≤ jw = (jr − 1) ≤ 99
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Dependence
Hierarchical computation of dependence directions in loops

for(i = 1 to n)
A[f(i)] =

= A[g(i)]

Test for any dependence from iteration Iw to Ir :
1 ≤ Iw ≤ n, 1 ≤ Ir ≤ n ∧ f (Iw ) = g(Ir )

Use this test to test any direction [*]
If solutions add additional constraints:
< direction : add Iw < Ir ,
= direction : add Iw = Ir

Extend for multi loops, [*, *] then [<, *], [=, *] etc -
hierarchical testing
If L is loop depth, requires O(3L)) tests per array access pair!



Dependence
Conservative testing

Full problem is NP-complete; use some quick and dirty tests
Apply test
If fail to accurately solve dependence, try more tests
Still fail? Assume dependency
Never dangerous, may be sub-optimal
Works correctly for vast majority of code



Dependence
Classification for simplification : Kennedy approach

Test for each subscript in turn, if any subscript has no
dependence - then no solution

ZIV, SIV, MIV
Subscript is pair of expressions at same dimension

ZIV if it contains no index - e.g. 〈2, 10〉
SIV if it contains only one index - e.g. 〈i , i + 2〉

MIV if it contains more than one index - e.g. 〈i + j , j〉

Example classification
A[5, i+1, j] = A[10, i, k] + c

Subscript in 1st dim

contains zero index variables (ZIV)
Subscript in 2nd dim contains single (i) index variables (SIV)
Subscript in 3rd dim contains multi (j,k) index variables (MIV)
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Dependence
Separability

Separability
Indices in separable subscripts do not occur in other subscripts
If two different subscripts contain same index they are coupled
Separable subscripts and coupled groups handled
independently

Example separability
a(i+1, j) = a(k, j) + c

First subscript is

separable.
Second subscript is separable.

a(i, j, j) = a(i, j, k) + c
Second subscript is coupled.
Third subscript is coupled.
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Dependence
ZIV test

ZIV
A[..., cw , ...] = A[..., cr , ...] ...

If cw and cr are constants or loop invariant and cw 6= cr
No dependence

ZIV example
A[5, j+1, 10, k] = A[i, j, 12, k-1] + c

Third subscript has ZIV, and 10 6= 12
No dependence



Dependence
Strong SIV test

Strong SIV test
A[ai+cw ] = A[ai+cr ] ...Constraint is:

aiw + cw = air + cr ⇒

iw − ir = (cw − cr )/a

Has solution is (cw − cr )/a is integer and is in range.

Strong SIV example
for(i = 1 to 10)

A[i+1] = A[i] + c
Subscript is Strong SIV, a = 1, cw = 1, cr = 0

(cw − cr )/a = 1 ∈ [1, 10]

Dependence



Dependence
General SIV test or greatest common divisor

General SIV test
A[aw i+cw ] = A[ar i+cr ] ...Constraint is:

aw iw + cw = ar ir + cr

If gcd(aw , ar ) does not divides cw − cr then no solution.
Else possibly many solutions.

General SIV example
for(i = 1 to 10)

A[2i+1] = A[4i] + c
Subscript is Strong SIV, aw = 2, ar = 4, cw = 1, cr = 0

(cw − cr )/gcd(aw , ar ) = 0.5

No dependence



Dependence
Banerjee test

GCD test does not consider range - only if integer solution
possible somewhere
Banerjee test for existence of real valued solution in range
If no real solution in range, then no integer one either

Banerjee test
A[aw i+cw ] = A[ar i+cr ] ...

Constraint is:
aw iw + cw = ar ir + cr ⇒

h(iw , ir ) = aw iw − ar ir + cw − cr = 0

True by intermediate value theorem, if max(h) ≥ 0 ∧ min(h) ≤ 0



Dependence
Banerjee test

Banerjee test
for(i = 1 to 100)

A[2*i+3] = A[i+7]

We have 2iw + 3 = ir + 7, h = 2iw ir 4 and 1 ≤ iw ≤ ir ≤ 100
max(h) = (2 ∗ 100 − 1 − 4) = 195,min(h) =
(2 ∗ 1 − 100 − 4) = −102
max(h) = 195 ≥ 0 ≥ min(h) = 102 – Hence solution
Simple example can be extended. Technical difficulties with
complex iteration spaces
Performed sub-script at a time, Used for MIV



Dependence
Pugh’s Omega Test6

Exact solutions using integer linear programming
Fast enough for most real programs

Worst case exponential time
Commonly low order polynomial
Can directly yield direction and distance

Algorithm
Express constraints
Simplify constraints
Do Fourier-Motzkin elimination

6Read the paper!



Dependence
Pugh’s Omega Test

Geometric interpretation of constraints
Constraints define n dimensional, revalued volume
If empty no possible integer solutions
Project volume to one fewer dimensions - giving real shadow
If no integer points in shadow, no integer points in volume



Dependence
Pugh’s Omega Test

Integer points in real shadow do not imply integer points in volume
Define ‘dark shadow’ where if dark shadow contains integer
point then real volume must
E.g.7 shadow wherever real volume is thicker than 1
No integer points in dark shadow does not imply no integer
points in real volume

7Read paper for what they do
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Summary

Parallelism
Types of dependence flow, anti and output
Distance and direction vectors
Classification of loop based data dependences
Dependence tests: gcd, Banerjee and Omega
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