Compiler Optimisation
7 — Register Allocation

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019

Introduction

This lecture:
@ Local Allocation - spill code
o Global Allocation based on graph colouring

@ Techniques to reduce spill code

Register allocation

@ Physical machines have limited number of registers
@ Scheduling and selection typically assume infinite registers

@ Register allocation and assignment co — k registers

OO register | Instruction [OO register Register k register
asembly Scheduling asembly Allocation asembly

@ Produce correct code that uses k (or fewer) registers

Instruction
Selection

Requirements

@ Minimise added loads and stores

@ Minimise space used to hold spilled values
@ Operate efficiently
o O(n), O(nlogzn), maybe O(n?), but not O(2")

Register allocation

Definitions

Allocation versus assignment

o Allocation is deciding which values to keep in registers

@ Assignment is choosing specific registers for values

Interference

| \

Two values? cannot be mapped to the same register wherever they
are both five?
Such values are said to interfere

?A value is stored in a variable
bA value is live from its definition to its last use

| \

Live range

The live range of a value is the set of statements at which it is live
May be conservatively overestimated (e.g. just begin — end)

A

Register allocation

Definitions

Spilling
Spilling saves a value from a register to memory

That register is then free — Another value often loaded
Requires F registers to be reserved

| \

Clean and dirty values

A previously spilled value is clean if not changed since last spill
Otherwise it is dirty
A clean value can b spilled without a new store instruction

| \

Spilling in ILOC

F is 0 (assuming rarp already reserved)

Dirty value Clean value
storeAl ry — rap, Ox loadAI ryp, @y =,
loadAT rap, @y = 1,

A\

Local register allocation

Register allocation only on basic block

MAXLIVE

Let MAXLIVE be the maximum, over each instruction i in the
block, of the number of values (pseudo-registers) live at i.

@ If MAXLIVE < k, allocation should be easy
If MAXLIVE < k, no need to reserve F registers for spilling

o
o If MAXLIVE > k, some values must be spilled to memory
o If MAXLIVE > k, need to reserve F registers for spilling

Two main forms:
@ Top down

@ Bottom up

Local register allocation
MAXLIVE

Example MAXLIVE computation

Some simple code with virtual registers

loadI 1028 ==r k// r, <~ 1028

load r, =1, {// r, ~ MEM(r,)
mult r,, r, —=r.|// r. <~ 1028y
load x =14 l// g — x

sub Ta, Yp =T |// ro < x-y
load =z —r: 0// v~ 2

mult r,, re =1, |// ry < z'(x-y)
gr To =1y }// < z'(x-y)-1028 "y

store r, —r_ |// MEM(r,) ~—z'(x-y)-1028 "'y

sub r

Local register allocation
MAXLIVE

Example MAXLIVE computation

Live registers

loadI 1028 =>r, }// r,

load r, =z, |// r, 1y

mult r,, r, =r. |// r, r, r,

load x =1y l// r, ry, r. T4

sub Ty, Ty —=1r. |// r, Eq Fe

load =z =r:// r. r. r. T

mult r.,, ry =>r,}// r, r. Ty
sub Eqp Eo = Ly | (AN Ty
store r, —r.)/

Local register allocation
MAXLIVE

Example MAXLIVE computation

MAXLIVE is 4
loadI 1028 ==r,)// «r,
load r, =1, }// r, ry
mult r,, r, =—=zr.0// r, r, r.
load x =g l//| £, £, £, T4
sub 1y, 1, —>r.|// T, T, 7,
load =z = I, //[ra r. r, rfJ
mult r.,, r; =1, // 1, T
sub ry, ¥, =1, |// r, T
store r, — .)//

Local register allocation
Top down

Algorithm:
@ If number of values > k

o Rank values by occurrences
o Allocate first k - F values to registers
o Spill other values

Local register allocation
Top down

Example top down

Usage counts

loadI 1028 ==r,)// r, Counts
load r, =r, |// r, ry, =4
mult r,, r, =—=7r. |// r, r, T, ry,=3
load x =1y l// r, ry, r. T4 r.=2
SUb Tar Iy ire // r, re re rd=2
load =z =r:)// T, r. r. T £,=2
mult r.,, ry =>r,}// r, r. g, ry=2
sub Eqp Eo = Ly | (AN Ty | Lg=2
store ry —zr r,=2
—_—

Local register allocation
Top down

Example top down

Spill r.. Now only 3 values live at once

Must have r, |Counts

loadI 1028 =7z, }// r,
load r, =1, V// r. r.< r,r, | r,=4
mult r,, r, =—=r.|// r, r, T, ; ry,=3
Spill r,, _
load x =14 l// r., rb@rd r.=2
sub Ty, Ty — . V// r. r. ry=2
load =z —r: l// r, r. T £,=2
mult r.,, ry =r, // r r, r ry=2
S & - Restore r_ o
sub Eqp Eo = Ly | AN Ty | Lg=2
store r, —zr r,=2
ﬁ

Local register allocation
Top down

Example top down

Spill code inserted

loadI 1028 r,
load r, ry
mult r,, 1y = r.
store r, —> r., spill,
load x Ty
sub Ty, Iy T,
locad =z T
mult r., r¢ Ty
load «r,,,, spill, r,
sub Ter T, Iy
store ry I

Local register allocation

Top down

Example top down

Register assignment straightforward

loadI
load
mult
store
load
sub
load
mult
load
sub
store

1028
155

i, I
I3

b4

T3, I

Ty I3

r spill,

arpr
Ty I3

r
I
s
s
s
>
s
>
3
>
r

spill,

Local register allocation
Bottom up

Algorithm:
@ Start with empty register set
@ Load on demand
@ When no register is available, free one
Replacement:
@ Spill the value whose next use is farthest in the future

@ Prefer clean value to dirty value

Local register allocation
Top down

Example bottom down

Spill r,. Now only 3 values live at once

loadI 1028 =>r,|// r, r, used
load r, =1, V// r, 1y latest
mult r,, r, =zr,|// r, r, r, .

Spill r
load x =1y l// rb . Tq 2
sub Ty, Ty ==t |// 1 Eq Fe
load =z =r: // r. r. T
mult r., re =>r,1// r. g,
sub ry, r. =1, }// Ty
ctore r: I vy Restore r,

Local register allocation

Top down

Example bottom down

Spill code inserted

loadI
load
mult
store
load
sub
load
mult
sub
load
store

1028
ra

Lar Tp
ra

X

Lar Tp
Z

re! e
Yer Yo
o spill,
Iy

a

Global register allocation

Local allocation does not capture reuse of values across multiple
blocks
Most modern, global allocators use a graph-colouring paradigm
@ Build a “conflict graph” or “interference graph”
o Data flow based liveness analysis for interference

@ Find a k-colouring for the graph, or change the code to a
nearby problem that it can k-colour

o NP-complete under nearly all assumptions®

Local allocation is NP-complete with dirty vs clean

Global register allocation
Algorithm sketch

@ From live ranges construct an interference graph
@ Colour interference graph so that no two neighbouring nodes
have same colour
o If graph needs more than k colours - transform code
o Coalesce merge-able copies
e Split live ranges
e Spill
@ Colouring is NP-complete so we will need heuristics
@ Map colours onto physical registers

Global register allocation
Graph colouring

Definition
A graph G is said to be k-colourable iff the nodes can be labeled
with integers 1 ... k so that no edge in G connects two nodes with

the same label

Examples

2-colourable 3-colourable)

Global register allocation

Interference graph

The interference graph, Gz = (Nz, Ez)
@ Nodes in Gz represent values, or live ranges
o Edges in Gz represent individual interferences
o Vx,y € Nz, x — y € E7 iff x and y interfere?
A k-colouring of Gz can be mapped into an allocation to k registers

2Two values interfere wherever they are both five
Two live ranges interfere if their values interfere at any point

Global register allocation

Colouring the interference graph

@ Degree® of a node (n°) is a loose upper bound on colourability
@ Any node, n, such that n® < k is always trivially k-colourable
e Trivially colourable nodes cannot adversely affect the
colourability of neighbours*
e Can remove them from graph
o Reduces degree of neighbours - may be trivially colourable
o If left with any nodes such that n° > k spill one
o Reduces degree of neighbours - may be trivially colourable

3Degree is number of neighbours
*Proof as exercise

Global register allocation
Chaitin's algorithm

@ While 3 vertices with < k neighbours in Gz
o Pick any vertex n such that n° < k and put it on the stack
e Remove n and all edges incident to it from Gz
@ If Gz is non-empty (n° >= k,Vn € Gz) then:
o Pick vertex n (heuristic), spill live range of n
e Remove vertex n and edges from Gz, put n on “spill list”
o Goto step 1
© If the spill list is not empty, insert spill code, then rebuild the
interference graph and try to allocate, again

@ Otherwise, successively pop vertices off the stack and colour
them in the lowest colour not used by some neighbour

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin's algorithm

Colour with kK = 3 colours

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin's algorithm
a°=2< k Choose a

e ——

Stack Colours

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin’s algorithm

Push a and remove from graph

—

Stack Colours

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin's algorithm
b°=2< kand c®=2 < k Choose b

o
Gj0 .
O O)

G, Stack Colours

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin’s algorithm

Push b and remove from graph

o o r,
o’

G, Stack Colours

€0
8

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin's algorithm
c°=2<k,d*=2<k,and e =2 < k Choose c

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin’s algorithm

Push ¢ and remove from graph

0080

G, Stack Colours

N [

€

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin’s algorithm

d°=1< kand e®=1< k Choose d

Q@ | =

G, Stack Colours

€
8

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin’s algorithm

Push d and remove from graph

©
@I

G, Stack

€

N [

Colours

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin's algorithm
e°=0< k Choose e

©

G, Stack Colours

'€CCO

o’

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin’s algorithm

Push e and remove from graph

'€CCCO
B E

G, Stack Colours

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin’s algorithm
Pop e, neighbours use no colours, choose red

©
@ I8

G, Stack Colours

N [

€

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin’s algorithm

Pop d, neighbours use red, choose green

@9 &

G, Stack Colours

N [

€

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin's algorithm
Pop ¢, neighbours use red and green choose blue

0,0

G,

©

N

Stack

N [

Colours

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin's algorithm
Pop b, neighbours use red and green choose blue

2
0,0

N (o

()

G, Stack Colours

Global register allocation
Chaitin's algorithm

Example: colouring with Chaitin's algorithm

Pop a, neighbours use blue choose red

2
O 0,0

—

G, Stack

N (o

Colours

Global register allocation

Optimistic colouring

o If Chaitins algorithm reaches a state where every node has k
or more neighbours, it chooses a node to spill.

Example of Chaitin overzealous spilling

k=2
Graph is 2-colourable
Chaitin must immediately spill one of these nodes

@ Briggs said, take that same node and push it on the stack
e When you pop it off, a colour might be available for it!

@ Chaitin-Briggs algorithm uses this to colour that graph

Global register allocation
Chaitin-Briggs algorithm

@ While 3 vertices with < k neighbours in Gz
e Pick any vertex n such that n° < k and put it on the stack
e Remove n and all edges incident to it from Gz

@ If Gz is non-empty (n° >= k,Vn € Gz) then:
o Pick vertex n (heuristic) (Do not spill)

o Remove vertex n from Gz, put n on stack (Not spill list)
o Goto step 1

© Otherwise, successively pop vertices off the stack and colour
them in the lowest colour not used by some neighbour

e If some vertex cannot be coloured, then pick an uncoloured
vertex to spill, spill it, and restart at step 1

Step 3 is also different

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Colour with k = 2 colours

e ——

Stack Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm
a°=22>k Don’t Spill! Choose a

N

Stack Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Push a and remove from graph

o
© 2
O ()

G, Stack Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm
b°=1< kand c®°=1< k Choose b

o
@ Z
O ()

G, Stack Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Push b and remove from graph

©0

G, Stack Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm
c®=1<k,and d°=1< k Choose c

G, Stack Colours

©0

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Push ¢ and remove from graph

ONo
N

G, Stack Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm
d°=1<k Choose d

©

G, Stack Colours

0060

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Push d and remove from graph

CEEE

G, Stack Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Pop d, neighbours use no colours, choose red

@ \n -
N

G, Stack Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Pop ¢, neighbours use red choose green

©0

Stack

]
G,

Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Pop b, neighbours use red choose green

b)
S
O ©)

G, Stack

Colours

Global register allocation
Chaitin-Briggs algorithm

Example: colouring with Chaitin-Briggs algorithm

Pop a, neighbours use green choose red

(2)
e.o

N

G, Stack Colours

Global register allocation
Spill candidates

@ Minimise spill cost/ degree

@ Spill cost is the loads and stores needed. Weighted by scope -
i.e. avoid inner loops

@ The higher the degree of a node to spill the greater the
chance that it will help colouring

@ Negative spill cost load and store to same memory location

with no other uses

@ Infinite cost - definition immediately followed by use. Spilling
does not decrease live range

Global register allocation

Alternative spilling

@ Splitting live ranges

o Coalesce

Global register allocation
Live range splitting

@ A whole live range may have many interferences, but perhaps
not all at the same time

@ Split live range into two variables connected by copy
@ Can reduce degree of interference graph

@ Smart splitting allows spilling to occur in “cheap” regions

Global register allocation

Live ranges splitting

Splitting example

Non contiguous live ranges - cannot be 2 coloured

~

a b c

~

I
I

Live ranges

Interference

Graph

Global register allocation

Live ranges splitting

Splitting example

Split live ranges - can be 2 coloured

a, as ds; b1 bz (o

I1
[1

Live ranges Interference
Graph

Global register allocation

Coalescing

If two ranges don't interfere and are connected by a copy
coalesce into one — opposite of splitting
Reduces degree of nodes that interfered with both

If x ==y and x — y € Gz then can combine LR, and LR,
Eliminates the copy operation

Reduces degree of LRs that interfere with both x and y

If a node interfered with both both before, coalescing helps
As it reduces degree, often applied before colouring takes place

=

Global register allocation

Coalescing

Coalescing can make the graph harder to color
e Typically, LR.,° > max(LR.°, LR,°)
o If max(LRx°,LRy°) < k and k < LR,,° then LR,, might spill,
while LR, and LR, would not spill

Global register allocation

Coalescing

Observation led to conservative coalescing

@ Conceptually, coalesce x and y iff x — y € Gz and LR,,° < k
@ We can do better
o Coalesce LR, and LR, iff LR, has < k neighbours with
degree > k
o Only neighbours of “significant degree” can force LR, to spill
@ Always safe to perform that coalesce

e Cannot introduce a node of non-trivial degree
e Cannot introduce a new spill

Global register allocation
Other approaches

@ Top-down uses high level priorities to decide on colouring

@ Hierarchical approaches - use control flow structure to guide
allocation

@ Exhaustive allocation - go through combinatorial options -
very expensive but occasional improvement

@ Re-materialisation - if easy to recreate a value do so rather
than spill

@ Passive splitting using a containment graph to make spills
effective

@ Linear scan - fast but weak; useful for JITs

Global register allocation
Ongoing work

@ Eisenbeis et al examining optimality of combined reg alloc and
scheduling. Difficulty with general control-flow

@ Partitioned register sets complicate matters. Allocation can
require insertion of code which in turn affects allocation.
Leupers investigated use of genetic algs for TM series
partitioned reg sets.

@ New work by Fabrice Rastello and others. Chordal graphs
reduce complexity

@ As latency increases see work in combined code generation,
instruction scheduling and register allocation

Summary

@ Local Allocation - spill code
@ Global Allocation based on graph colouring

@ Techniques to reduce spill code

PPar CDT Advert

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

* 4-year programme: Research topics in software,
MSc by Research + PhD hardware, theory and

application of:

» Parallelism

» Concurrency

» Distribution

« Research-focused:
Work on your thesis topic
from the start

Full funding available
« Collaboration between:
» University of Edinburgh’s
School of Informatics Industrial engagement
* Ranked top in the UK by programme includes
2014 REF internships at leading
» Edinburgh Parallel Computing companies
Centre
* UK's largest supercomputing
centre

A i
informatics

Research Council

