Compiler Optimisation

7 - Register Allocation

Hugh Leather IF 1.18a hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture School of Informatics University of Edinburgh

2019

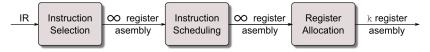
Introduction

This lecture:

- Local Allocation spill code
- Global Allocation based on graph colouring
- Techniques to reduce spill code

Register allocation

- Physical machines have limited number of registers
- Scheduling and selection typically assume infinite registers
- Register allocation and assignment $\infty \to k$ registers



Requirements

- Produce correct code that uses k (or fewer) registers
- Minimise added loads and stores
- Minimise space used to hold spilled values
- Operate efficiently
 - O(n), $O(nlog_2n)$, maybe $O(n^2)$, but not $O(2^n)$

Register allocation

Allocation versus assignment

- Allocation is deciding which values to keep in registers
- Assignment is choosing specific registers for values

Interference

Two values^a cannot be mapped to the same register wherever they are both *live*^b

Such values are said to interfere

^aA value is stored in a variable

^bA value is live from its definition to its last use

Live range

The live range of a value is the set of statements at which it is live May be conservatively overestimated (e.g. just begin \rightarrow end)

Register allocation

Spilling

Spilling saves a value from a register to memory That register is then free – Another value often loaded Requires $\mathcal F$ registers to be reserved

Clean and dirty values

A previously spilled value is **clean** if not changed since last spill Otherwise it is dirty

A clean value can b spilled without a new store instruction

Spilling in ILOC

 \mathcal{F} is 0 (assuming r_{arp} already reserved)

Dirty value

Clean value

storeAI $r_x \rightarrow r_{arp}, @x$ loadAI $r_{arp}, @y \Rightarrow r_y$ loadAI $r_{arp}, @y \Rightarrow r_y$

Register allocation only on basic block

MAXLIVE

Let MAXLIVE be the maximum, over each instruction i in the block, of the number of values (pseudo-registers) live at i.

- If MAXLIVE ≤ k, allocation should be easy
- ullet If MAXLIVE \leq k, no need to reserve ${\cal F}$ registers for spilling
- ullet If MAXLIVE > k, some values must be spilled to memory
- ullet If MAXLIVE > k, need to reserve ${\cal F}$ registers for spilling

Two main forms:

- Top down
- Bottom up

Local register allocation MAXLIVE

Example MAXLIVE computation

Some simple code with virtual registers

Local register allocation MAXLIVE

Example MAXLIVE computation

Live registers

Local register allocation MAXLIVE

Example MAXLIVE computation

MAXLIVE is 4

Top down

Algorithm:

- If number of values > k
 - Rank values by occurrences
 - Allocate first $k \mathcal{F}$ values to registers
 - Spill other values

Top down

Example top down

Usage counts

Top down

Example top down

Spill r_c . Now only 3 values live at once

Top down

Example top down

Spill code inserted

```
loadI 1028
                               r_a
load ra
                               r_b
mult ra, rb
store r<sub>c</sub>
                                       spill<sub>c</sub>
load x
                               r_d
sub r<sub>d</sub>, r<sub>b</sub>
load z
mult r_e, r_f
                              r_{q}
load r<sub>arp</sub>, spill<sub>c</sub>
sub r_f, r_c
                              r_h
store rh
                              ra
```

Top down

Example top down

Register assignment straightforward

```
loadI 1028
                               r_1
load r_1
                           r_2
mult r_1, r_2
                          \rightarrow r_{arp}, spill_c
store r<sub>3</sub>
load x
                              r_3
sub r_3, r_2
                             r_2
load z
                            r_3
mult r_2, r_3
                            r_2
load r<sub>arp</sub>, spill<sub>c</sub>
                          \mathbf{r}_3
sub r_2, r_3
                             \mathbf{r}_2
store r<sub>2</sub>
                              r_1
```

Algorithm:

- Start with empty register set
- Load on demand
- When no register is available, free one

Replacement:

- Spill the value whose next use is farthest in the future
- Prefer clean value to dirty value

Top down

Example bottom down

Spill r_a . Now only 3 values live at once

Top down

Example bottom down

Spill code inserted

```
loadI 1028
                              r_a
load ra
                              r_b
mult ra, rb
store ra
                                      spill<sub>a</sub>
load x
                              r_d
sub r<sub>d</sub>, r<sub>b</sub>
load z
mult r_e, r_f
                              r_{q}
sub r_f, r_c
                              r_h
load r<sub>arp</sub>, spill<sub>a</sub>
                              r_a
store rh
```

Local allocation does not capture reuse of values across multiple blocks

Most modern, global allocators use a graph-colouring paradigm

- Build a "conflict graph" or "interference graph"
 - Data flow based liveness analysis for interference
- Find a k-colouring for the graph, or change the code to a nearby problem that it can k-colour
- NP-complete under nearly all assumptions¹

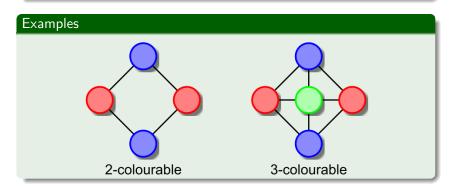
Algorithm sketch

- From live ranges construct an interference graph
- Colour interference graph so that no two neighbouring nodes have same colour
- If graph needs more than k colours transform code
 - Coalesce merge-able copies
 - Split live ranges
 - Spill
- Colouring is NP-complete so we will need heuristics
- Map colours onto physical registers

Global register allocation Graph colouring

Definition

A graph G is said to be k-colourable iff the nodes can be labeled with integers $1 \dots k$ so that no edge in G connects two nodes with the same label



Interference graph

The interference graph, $G_{\mathcal{I}} = (N_{\mathcal{I}}, E_{\mathcal{I}})$

- Nodes in $G_{\mathcal{I}}$ represent values, or live ranges
- Edges in $G_{\mathcal{I}}$ represent individual interferences
- $\forall x, y \in N_{\mathcal{I}}, x \to y \in E_{\mathcal{I}} \text{ iff } x \text{ and } y \text{ interfere}^2$

A *k-colouring* of $G_{\mathcal{I}}$ can be mapped into an allocation to *k* registers

²Two values **interfere** wherever they are both *live*

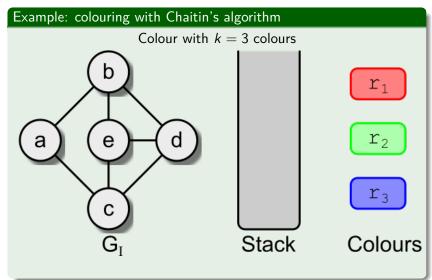
Colouring the interference graph

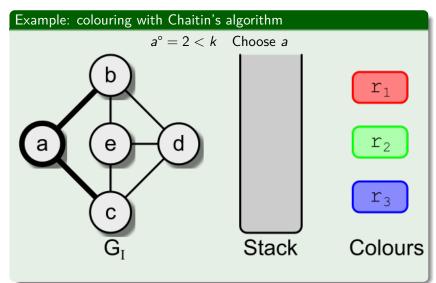
- Degree³ of a node (n°) is a loose upper bound on colourability
- Any node, n, such that $n^{\circ} < k$ is always trivially k-colourable
 - Trivially colourable nodes cannot adversely affect the colourability of neighbours⁴
 - Can remove them from graph
 - Reduces degree of neighbours may be trivially colourable
- If left with any nodes such that $n^{\circ} \geq k$ spill one
 - Reduces degree of neighbours may be trivially colourable

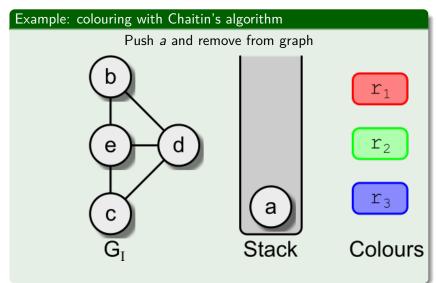
³Degree is number of neighbours

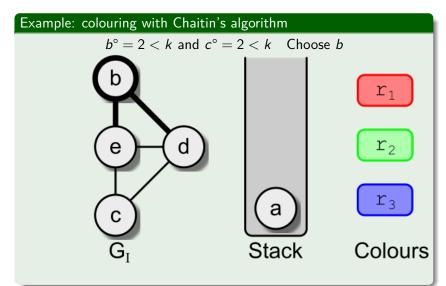
⁴Proof as exercise

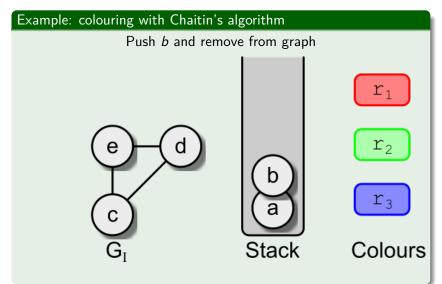
- **①** While \exists vertices with < k neighbours in $G_{\mathcal{I}}$
 - Pick any vertex n such that $n^{\circ} < k$ and put it on the stack
 - Remove n and all edges incident to it from $G_{\mathcal{I}}$
- ② If $G_{\mathcal{I}}$ is non-empty $(n^{\circ} >= k, \forall n \in G_{\mathcal{I}})$ then:
 - Pick vertex n (heuristic), spill live range of n
 - Remove vertex n and edges from $G_{\mathcal{I}}$, put n on "spill list"
 - Goto step 1
- If the spill list is not empty, insert spill code, then rebuild the interference graph and try to allocate, again
- Otherwise, successively pop vertices off the stack and colour them in the lowest colour not used by some neighbour

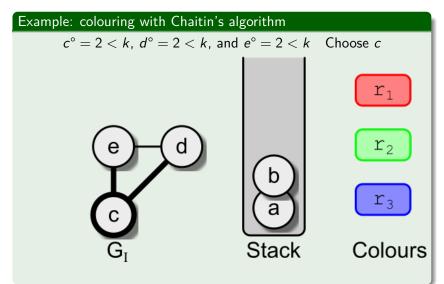


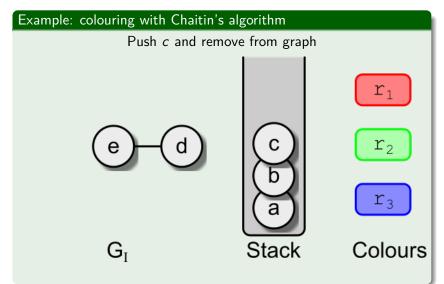


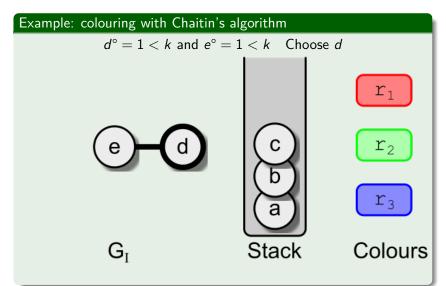


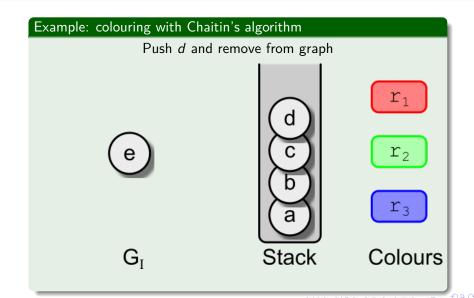


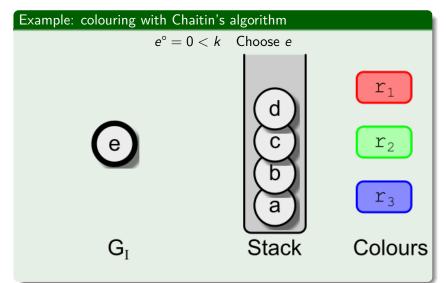


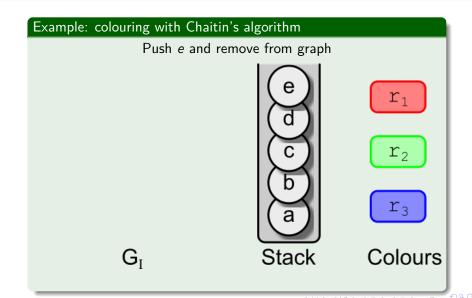


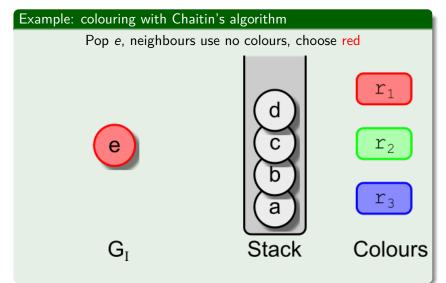


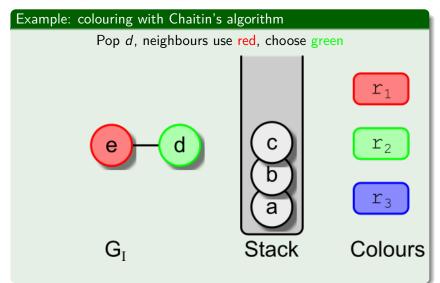




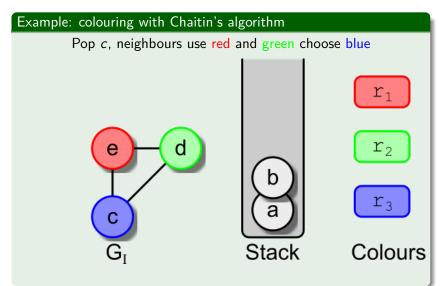




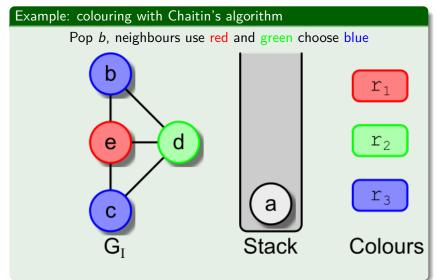




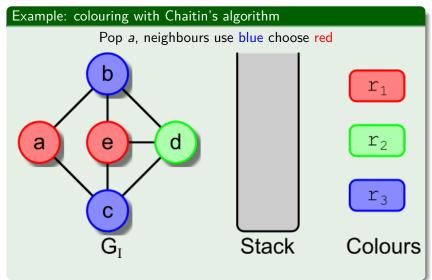
Global register allocation Chaitin's algorithm



Chaitin's algorithm



Global register allocation Chaitin's algorithm



Optimistic colouring

If Chaitins algorithm reaches a state where every node has k
or more neighbours, it chooses a node to spill.

Example of Chaitin overzealous spilling

k = 2

Graph is 2-colourable

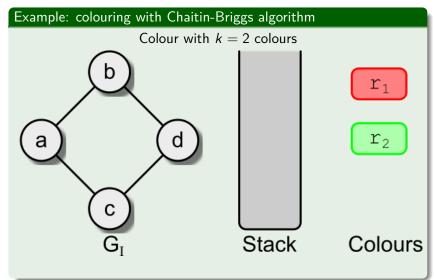
Chaitin must immediately spill one of these nodes

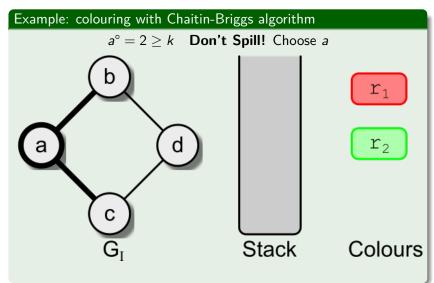
- Briggs said, take that same node and push it on the stack
 When you pop it off, a colour might be available for it!
- Chaitin-Briggs algorithm uses this to colour that graph

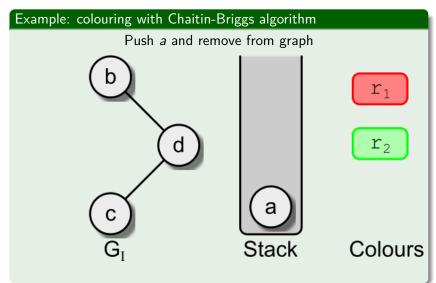
Chaitin-Briggs algorithm

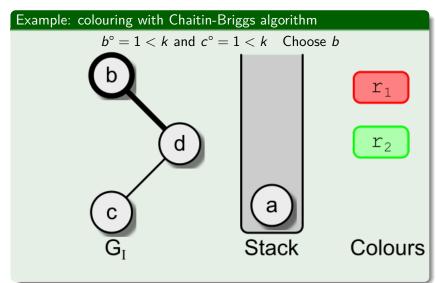
- **1** While \exists vertices with < k neighbours in $G_{\mathcal{I}}$
 - Pick any vertex n such that $n^{\circ} < k$ and put it on the stack
 - ullet Remove n and all edges incident to it from $G_{\mathcal{I}}$
- ② If $G_{\mathcal{I}}$ is non-empty $(n^{\circ} >= k, \forall n \in G_{\mathcal{I}})$ then:
 - Pick vertex *n* (heuristic) (Do not spill)
 - Remove vertex n from $G_{\mathcal{I}}$, put n on stack (Not spill list)
 - Goto step 1
- Otherwise, successively pop vertices off the stack and colour them in the lowest colour not used by some neighbour
 - If some vertex cannot be coloured, then pick an uncoloured vertex to spill, spill it, and restart at step 1

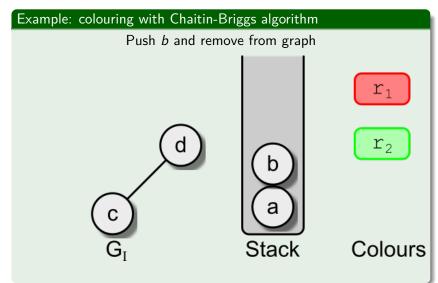
Step 3 is also different

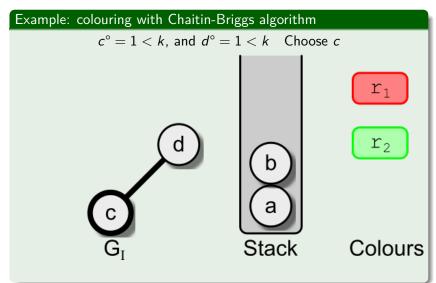


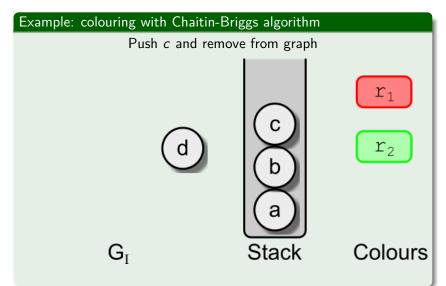


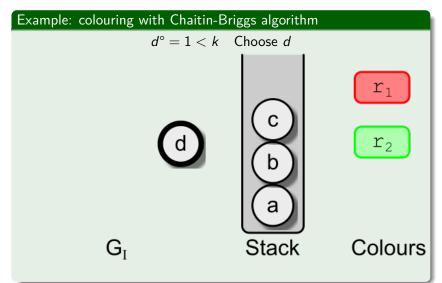


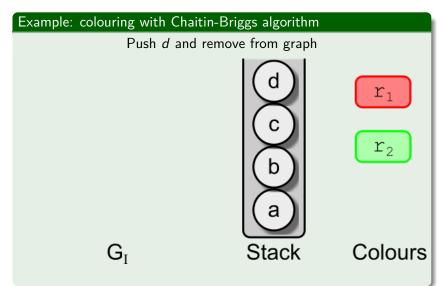


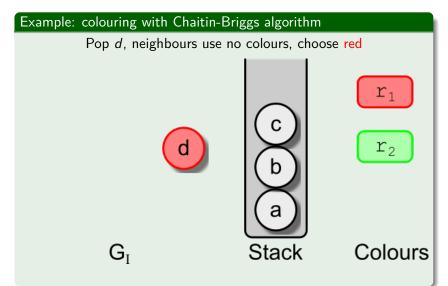


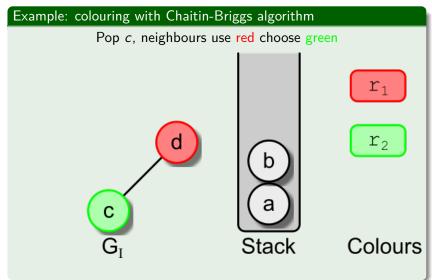


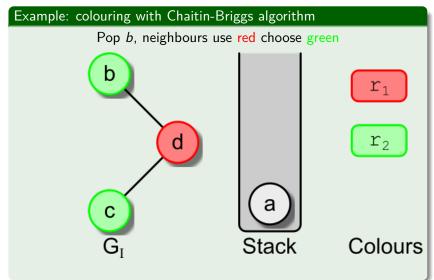


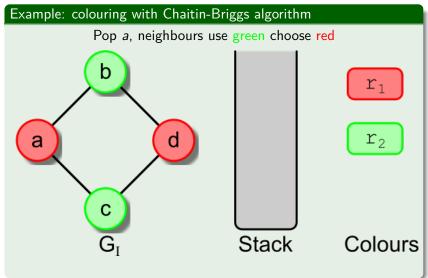












Global register allocation Spill candidates

- Minimise spill cost/ degree
- Spill cost is the loads and stores needed. Weighted by scope i.e. avoid inner loops
- The higher the degree of a node to spill the greater the chance that it will help colouring
- Negative spill cost load and store to same memory location with no other uses
- Infinite cost definition immediately followed by use. Spilling does not decrease live range

Alternative spilling

- Splitting live ranges
- Coalesce

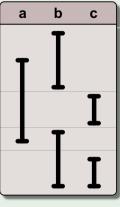
Global register allocation Live range splitting

- A whole live range may have many interferences, but perhaps not all at the same time
- Split live range into two variables connected by copy
- Can reduce degree of interference graph
- Smart splitting allows spilling to occur in "cheap" regions

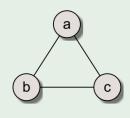
Live ranges splitting

Splitting example

Non contiguous live ranges - cannot be 2 coloured

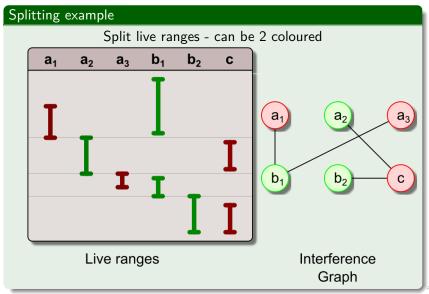


Live ranges



Interference Graph

Live ranges splitting

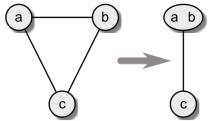


Global register allocation Coalescing

If two ranges don't interfere and are connected by a copy coalesce into one – opposite of splitting Reduces degree of nodes that interfered with both

If x := y and $x \to y \in G_{\mathcal{I}}$ then can combine LR_x and LR_y

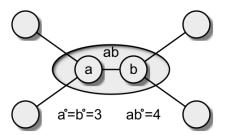
- Eliminates the copy operation
- Reduces degree of LRs that interfere with both x and y
- If a node interfered with both both before, coalescing helps
- As it reduces degree, often applied before colouring takes place



Global register allocation Coalescing

Coalescing can make the graph harder to color

- Typically, $LR_{xy}^{\circ} > max(LR_x^{\circ}, LR_y^{\circ})$
- If $max(LRx^{\circ}, LRy^{\circ}) < k$ and $k < LR_{xy}^{\circ}$ then LR_{xy} might spill, while LR_x and LR_y would not spill



Global register allocation Coalescing

Observation led to conservative coalescing

- Conceptually, coalesce x and y iff $x \to y \in G_{\mathcal{I}}$ and $LR_{xy}^{\circ} < k$
- We can do better
 - Coalesce LR_x and LR_y iff LR_{xy} has < k neighbours with degree > k
 - Only neighbours of "significant degree" can force LR_{xy} to spill
- Always safe to perform that coalesce
 - Cannot introduce a node of non-trivial degree
 - Cannot introduce a new spill

Global register allocation Other approaches

- Top-down uses high level priorities to decide on colouring
- Hierarchical approaches use control flow structure to guide allocation
- Exhaustive allocation go through combinatorial options very expensive but occasional improvement
- Re-materialisation if easy to recreate a value do so rather than spill
- Passive splitting using a containment graph to make spills effective
- Linear scan fast but weak; useful for JITs

- Eisenbeis et al examining optimality of combined reg alloc and scheduling. Difficulty with general control-flow
- Partitioned register sets complicate matters. Allocation can require insertion of code which in turn affects allocation. Leupers investigated use of genetic algs for TM series partitioned reg sets.
- New work by Fabrice Rastello and others. Chordal graphs reduce complexity
- As latency increases see work in combined code generation, instruction scheduling and register allocation

Summary

- Local Allocation spill code
- Global Allocation based on graph colouring
- Techniques to reduce spill code

PPar CDT Advert

EPSRC Centre for Doctoral Training in Pervasive Parallelism

- 4-year programme: MSc by Research + PhD
- Research-focused:
 Work on your thesis topic
 from the start
- · Collaboration between:
 - University of Edinburgh's School of Informatics
 - * Ranked top in the UK by 2014 REF
 - ► Edinburgh Parallel Computing Centre
 - * UK's largest supercomputing centre

- Research topics in software, hardware, theory and application of:
 - ► Parallelism
 - ► Concurrency
 - Distribution
- · Full funding available
- Industrial engagement programme includes internships at leading companies

The biggest revolution in the technological landscape for fifty years

Now accepting applications! Find out more and apply at: pervasiveparallelism.inf.ed.ac.u

