
Compiler Optimisation
6 – Instruction Scheduling

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019

Introduction

This lecture:
Scheduling to hide latency and exploit ILP
Dependence graph
Local list Scheduling + priorities
Forward versus backward scheduling
Software pipelining of loops

Latency, functional units, and ILP

Instructions take clock cycles to execute (latency)
Modern machines issue several operations per cycle
Cannot use results until ready, can do something else
Execution time is order-dependent
Latencies not always constant (cache, early exit, etc)

Operation Cycles
load, store 3
load /∈ cache 100s
loadI, add, shift 1
mult 2
div 40
branch 0 – 8

Machine types

In order
Deep pipelining allows multiple instructions

Superscalar
Multiple functional units, can issue > 1 instruction

Out of order
Large window of instructions can be reordered dynamically

VLIW
Compiler statically allocates to FUs

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Simple schedule1 a := 2*a*b*c

Cycle Operations Operands waiting
loadAI rarp ,@a ⇒ r1

add r1, r1 ⇒ r1
loadAI rarp ,@b ⇒ r2

mult r1, r2 ⇒ r1
loadAI rarp ,@c ⇒ r2

mult r1, r2 ⇒ r1
storeAI r1 ⇒ rarp ,@a

Done

1loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Simple schedule1 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 r1
3 r1

add r1, r1 ⇒ r1
loadAI rarp ,@b ⇒ r2

mult r1, r2 ⇒ r1
loadAI rarp ,@c ⇒ r2

mult r1, r2 ⇒ r1
storeAI r1 ⇒ rarp ,@a

Done

1loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Simple schedule1 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 r1
3 r1
4 add r1, r1 ⇒ r1 r1

loadAI rarp ,@b ⇒ r2
mult r1, r2 ⇒ r1

loadAI rarp ,@c ⇒ r2
mult r1, r2 ⇒ r1

storeAI r1 ⇒ rarp ,@a
Done

1loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Simple schedule1 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 r1
3 r1
4 add r1, r1 ⇒ r1 r1
5 loadAI rarp ,@b ⇒ r2 r2
6 r2
7 r2

mult r1, r2 ⇒ r1
loadAI rarp ,@c ⇒ r2

mult r1, r2 ⇒ r1
storeAI r1 ⇒ rarp ,@a

Done

1loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Simple schedule1 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 r1
3 r1
4 add r1, r1 ⇒ r1 r1
5 loadAI rarp ,@b ⇒ r2 r2
6 r2
7 r2
8 mult r1, r2 ⇒ r1 r1
9 Next op does not use r1 r1

loadAI rarp ,@c ⇒ r2
mult r1, r2 ⇒ r1

storeAI r1 ⇒ rarp ,@a
Done

1loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Simple schedule1 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 r1
3 r1
4 add r1, r1 ⇒ r1 r1
5 loadAI rarp ,@b ⇒ r2 r2
6 r2
7 r2
8 mult r1, r2 ⇒ r1 r1
9 loadAI rarp ,@c ⇒ r2 r1, r2

10 r2
11 r2

mult r1, r2 ⇒ r1
storeAI r1 ⇒ rarp ,@a

Done

1loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Simple schedule1 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 r1
3 r1
4 add r1, r1 ⇒ r1 r1
5 loadAI rarp ,@b ⇒ r2 r2
6 r2
7 r2
8 mult r1, r2 ⇒ r1 r1
9 loadAI rarp ,@c ⇒ r2 r1, r2

10 r2
11 r2
12 mult r1, r2 ⇒ r1 r1
13 r1

storeAI r1 ⇒ rarp ,@a
Done

1loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Simple schedule1 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 r1
3 r1
4 add r1, r1 ⇒ r1 r1
5 loadAI rarp ,@b ⇒ r2 r2
6 r2
7 r2
8 mult r1, r2 ⇒ r1 r1
9 loadAI rarp ,@c ⇒ r2 r1, r2

10 r2
11 r2
12 mult r1, r2 ⇒ r1 r1
13 r1
14 storeAI r1 ⇒ rarp ,@a store to complete
15 store to complete
16 store to complete

Done

1loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Schedule loads early2 a := 2*a*b*c

Cycle Operations Operands waiting
loadAI rarp ,@a ⇒ r1
loadAI rarp ,@b ⇒ r2
loadAI rarp ,@c ⇒ r3

add r1, r1 ⇒ r1
mult r1, r2 ⇒ r1
mult r1, r2 ⇒ r1

storeAI r1 ⇒ rarp ,@a
Done

2loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Schedule loads early2 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1

loadAI rarp ,@b ⇒ r2
loadAI rarp ,@c ⇒ r3

add r1, r1 ⇒ r1
mult r1, r2 ⇒ r1
mult r1, r3 ⇒ r1

storeAI r1 ⇒ rarp ,@a
Done

2loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Schedule loads early2 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 loadAI rarp ,@b ⇒ r2 r1, r2

loadAI rarp ,@c ⇒ r3
add r1, r1 ⇒ r1

mult r1, r2 ⇒ r1
mult r1, r3 ⇒ r1

storeAI r1 ⇒ rarp ,@a
Done

2loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Schedule loads early2 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 loadAI rarp ,@b ⇒ r2 r1, r2
3 loadAI rarp ,@c ⇒ r3 r1, r2, r3

add r1, r1 ⇒ r1
mult r1, r2 ⇒ r1
mult r1, r3 ⇒ r1

storeAI r1 ⇒ rarp ,@a
Done

2loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Schedule loads early2 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 loadAI rarp ,@b ⇒ r2 r1, r2
3 loadAI rarp ,@c ⇒ r3 r1, r2, r3
4 add r1, r1 ⇒ r1 r1, r2, r3

mult r1, r2 ⇒ r1
mult r1, r3 ⇒ r1

storeAI r1 ⇒ rarp ,@a
Done

2loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Schedule loads early2 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 loadAI rarp ,@b ⇒ r2 r1, r2
3 loadAI rarp ,@c ⇒ r3 r1, r2, r3
4 add r1, r1 ⇒ r1 r1, r2, r3
5 mult r1, r2 ⇒ r1 r1, r3
6 r1

mult r1, r3 ⇒ r1
storeAI r1 ⇒ rarp ,@a

Done

2loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Schedule loads early2 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 loadAI rarp ,@b ⇒ r2 r1, r2
3 loadAI rarp ,@c ⇒ r3 r1, r2, r3
4 add r1, r1 ⇒ r1 r1, r2, r3
5 mult r1, r2 ⇒ r1 r1, r3
6 r1
7 mult r1, r3 ⇒ r1 r1
8 r1

storeAI r1 ⇒ rarp ,@a
Done

2loads/stores 3 cycles, mults 2, adds 1

Effect of scheduling
Superscalar, 1 FU: New op each cycle if operands ready

Schedule loads early2 a := 2*a*b*c

Cycle Operations Operands waiting
1 loadAI rarp ,@a ⇒ r1 r1
2 loadAI rarp ,@b ⇒ r2 r1, r2
3 loadAI rarp ,@c ⇒ r3 r1, r2, r3
4 add r1, r1 ⇒ r1 r1, r2, r3
5 mult r1, r2 ⇒ r1 r1, r3
6 r1
7 mult r1, r3 ⇒ r1 r1
8 r1
9 storeAI r1 ⇒ rarp ,@a store to complete

10 store to complete
11 store to complete

Done
Uses one more register

11 versus 16 cycles – 31% faster!

2loads/stores 3 cycles, mults 2, adds 1

Scheduling problem

Schedule maps operations to cycle; ∀a ∈ Ops, S(a) ∈ N
Respect latency;
∀a, b ∈ Ops, a dependson b =⇒ S(a) ≥ S(b) + λ(b)
Respect function units; no more ops per type per cycle than
FUs can handle

Length of schedule, L(S) = maxa∈Ops(S(a) + λ(a))
Schedule S is time-optimal if ∀S1, L(S) ≤ L(S1)

Problem: Find a time-optimal schedule3

Even local scheduling with many restrictions is NP-complete

3A schedule might also be optimal in terms of registers, power, or space

List scheduling

Local greedy heuristic to produce schedules for single basic blocks
1 Rename to avoid anti-dependences
2 Build dependency graph
3 Prioritise operations
4 For each cycle

1 Choose the highest priority ready operation & schedule it
2 Update ready queue

List scheduling
Dependence/Precedence graph

Schedule operation only when operands ready
Build dependency graph of read-after-write (RAW) deps

Label with latency and FU requirements

Anti-dependences (WAR) restrict movement

Example: a = 2*a*b*c

List scheduling
Dependence/Precedence graph

Schedule operation only when operands ready
Build dependency graph of read-after-write (RAW) deps

Label with latency and FU requirements
Anti-dependences (WAR) restrict movement

Example: a = 2*a*b*c

List scheduling
Dependence/Precedence graph

Schedule operation only when operands ready
Build dependency graph of read-after-write (RAW) deps

Label with latency and FU requirements
Anti-dependences (WAR) restrict movement – renaming
removes

Example: a = 2*a*b*c

List scheduling

List scheduling algorithm
Cycle ← 1
Ready ← leaves of (D)
Active ← ∅
while(Ready ∪ Active 6= ∅)

∀a ∈ Active where S(a) + λ(a) ≤ Cycle
Active ← Active - a
∀ b ∈ succs(a) where isready(b)

Ready ← Ready ∪ b
if ∃ a ∈ Ready and ∀ b, apriority ≥ bpriority

Ready ← Ready - a
S(op) ← Cycle
Active ← Active ∪ a

Cycle ← Cycle + 1

List scheduling
Priorities

Many different priorities used
Quality of schedules depends on good choice

The longest latency path or critical path is a good priority
Tie breakers

Last use of a value - decreases demand for register as moves it
nearer def
Number of descendants - encourages scheduler to pursue
multiple paths
Longer latency first - others can fit in shadow
Random

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Example: Schedule with priority by critical path length

List scheduling
Forward vs backward

Can schedule from root to leaves (backward)
May change schedule time
List scheduling cheap, so try both, choose best

List scheduling
Forward vs backward

Opcode loadI lshift add addI cmp store
Latency 1 1 2 1 1 4

List scheduling
Forward vs backward

Forwards
Int Int Stores

1 loadI1 lshift
2 loadI2 loadI3
3 loadI4 add1
4 add2 add3
5 add4 addI store1
6 cmp store2
7 store3
8 store4
9 store5
10
11
12
13 cbr

Backwards
Int Int Stores

1 loadI1
2 addI lshift
3 add4 loadI3
4 add3 loadI2 store5
5 add2 loadI1 store4
6 add1 store3
7 store2
8 store1
9
10
11 cmp
12 cbr

Scheduling Larger Regions

Schedule extended basic blocks (EBBs)
Super block cloning

Schedule traces
Software pipelining

Scheduling Larger Regions
Extended basic blocks

Extended basic block
EBB is maximal set of blocks such that
Set has a single entry, Bi
Each block Bj other than Bi has

exactly one predecessor

Scheduling Larger Regions
Extended basic blocks

Extended basic block
EBB is maximal set of blocks such that
Set has a single entry, Bi
Each block Bj other than Bi has

exactly one predecessor

Scheduling Larger Regions
Extended basic blocks

Schedule entire paths through
EBBs
Example has four EBB paths

Having B1 in both causes conflicts

Moving an op out of B1 causes
problems
Must insert compensation code
Moving an op into B1 causes
problems

Scheduling Larger Regions
Extended basic blocks

Schedule entire paths through
EBBs
Example has four EBB paths

Having B1 in both causes conflicts

Moving an op out of B1 causes
problems
Must insert compensation code
Moving an op into B1 causes
problems

Scheduling Larger Regions
Extended basic blocks

Schedule entire paths through
EBBs
Example has four EBB paths

Having B1 in both causes conflicts

Moving an op out of B1 causes
problems
Must insert compensation code
Moving an op into B1 causes
problems

Scheduling Larger Regions
Extended basic blocks

Schedule entire paths through
EBBs
Example has four EBB paths

Having B1 in both causes conflicts

Moving an op out of B1 causes
problems
Must insert compensation code
Moving an op into B1 causes
problems

Scheduling Larger Regions
Extended basic blocks

Schedule entire paths through
EBBs
Example has four EBB paths
Having B1 in both causes conflicts

Moving an op out of B1 causes
problems

Must insert compensation code
Moving an op into B1 causes
problems

Scheduling Larger Regions
Extended basic blocks

Schedule entire paths through
EBBs
Example has four EBB paths
Having B1 in both causes conflicts

Moving an op out of B1 causes
problems
Must insert compensation code

Moving an op into B1 causes
problems

Scheduling Larger Regions
Extended basic blocks

Schedule entire paths through
EBBs
Example has four EBB paths
Having B1 in both causes conflicts

Moving an op out of B1 causes
problems
Must insert compensation code

Moving an op into B1 causes
problems

Scheduling Larger Regions
Superblock cloning

Join points create context problems

Clone blocks to create more
context
Merge any simple control flow
Schedule EBBs

Scheduling Larger Regions
Superblock cloning

Join points create context problems
Clone blocks to create more
context

Merge any simple control flow
Schedule EBBs

Scheduling Larger Regions
Superblock cloning

Join points create context problems
Clone blocks to create more
context
Merge any simple control flow

Schedule EBBs

Scheduling Larger Regions
Superblock cloning

Join points create context problems
Clone blocks to create more
context
Merge any simple control flow
Schedule EBBs

Scheduling Larger Regions
Trace scheduling

Edge frequency from profile (not
block frequency)

Pick “hot” path
Schedule with compensation code
Remove from CFG
Repeat

Scheduling Larger Regions
Trace scheduling

Edge frequency from profile (not
block frequency)
Pick “hot” path
Schedule with compensation code

Remove from CFG
Repeat

Scheduling Larger Regions
Trace scheduling

Edge frequency from profile (not
block frequency)
Pick “hot” path
Schedule with compensation code
Remove from CFG

Repeat

Scheduling Larger Regions
Trace scheduling

Edge frequency from profile (not
block frequency)
Pick “hot” path
Schedule with compensation code
Remove from CFG
Repeat

Loop scheduling

Loop structures can dominate execution time
Specialist technique software pipelining
Allows application of list scheduling to loops

Why not loop unrolling?

Allows loop effect to become arbitrarily small, but
Code growth, cache pressure, register pressure

Loop scheduling

Loop structures can dominate execution time
Specialist technique software pipelining
Allows application of list scheduling to loops

Why not loop unrolling?
Allows loop effect to become arbitrarily small, but
Code growth, cache pressure, register pressure

Software pipelining

Consider simple loop to sum array

Software pipelining
Schedule on 1 FU - 5 cycles

load 3 cycles, add 1 cycle, branch 1 cycle

Software pipelining
Schedule on VLIW 3 FUs - 4 cycles

load 3 cycles, add 1 cycle, branch 1 cycle

Software pipelining
A better steady state schedule exists

load 3 cycles, add 1 cycle, branch 1 cycle

Software pipelining
Requires prologue and epilogue (may schedule others in epilogue)

load 3 cycles, add 1 cycle, branch 1 cycle

Software pipelining
Respect dependences and latency – including loop carries

load 3 cycles, add 1 cycle, branch 1 cycle

Software pipelining
Complete code

load 3 cycles, add 1 cycle, branch 1 cycle

Software pipelining
Some definitions

Initiation interval (ii)
Number of cycles between initiating loop iterations

Original loop had ii of 5 cycles
Final loop had ii of 2 cycles

Recurrence
Loop-based computation whose value is used in later loop iteration

Might be several iterations later
Has dependency chain(s) on itself
Recurrence latency is latency of dependency chain

Software pipelining
Algorithm

Choose an initiation interval, ii
Compute lower bounds on ii
Shorter ii means faster overall execution

Generate a loop body that takes ii cycles
Try to schedule into ii cycles, using modulo scheduler
If it fails, increase ii by one and try again

Generate the needed prologue and epilogue code
For prologue, work backward from upward exposed uses in the
scheduled loop body
For epilogue, work forward from downward exposed definitions
in the scheduled loop body

Software pipelining
Initial initiation interval (ii)

Starting value for ii based on minimum resource and recurrence
constraints

Resource constraint
ii must be large enough to issue every operation
Let Nu = number of FUs of type u
Let Iu = number of operations of type u
dIu/Nue is lower bound on ii for type u
maxu(dIu/Nue) is lower bound on ii

Software pipelining
Initial initiation interval (ii)

Starting value for ii based on minimum resource and recurrence
constraints

Recurrence constraint
ii cannot be smaller than longest recurrence latency
Recurrence r is over kr iterations with latency λr

dλr/kue is lower bound on ii for type r
maxr(dλr/kue) is lower bound on ii

Software pipelining
Initial initiation interval (ii)

Starting value for ii based on minimum resource and recurrence
constraints

Start value = max(maxu(dIu/Nue),maxr (dλr/kue)

For simple loop

a = A[i]
b = b + a
i = i + 1
if i < n goto
end

Resource constraint
Memory Integer Branch

Iu 1 2 1
Nu 1 1 1

dIu/Nue 1 2 1
Recurrence constraint

b i
kr 1 1
λr 2 1

dIu/Nue 2 1

Software pipelining
Modulo scheduling

Modulo scheduling
Schedule with cycle modulo initiation interval

Software pipelining
Modulo scheduling

Modulo scheduling
Schedule with cycle modulo initiation interval

Software pipelining
Modulo scheduling

Modulo scheduling
Schedule with cycle modulo initiation interval

Software pipelining
Modulo scheduling

Modulo scheduling
Schedule with cycle modulo initiation interval

Software pipelining
Modulo scheduling

Modulo scheduling
Schedule with cycle modulo initiation interval

Software pipelining
Current research

Much research in different software pipelining techniques
Difficult when there is general control flow in the loop
Predication in IA64 for example really helps here
Some recent work in exhaustive scheduling -i.e. solve the
NP-complete problem for basic blocks

Summary

Scheduling to hide latency and exploit ILP
Dependence graph - dependences between instructions +
latency
Local list Scheduling + priorities
Forward versus backward scheduling
Scheduling EBBs, superblock cloning, trace scheduling
Software pipelining of loops

PPar CDT Advert

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

