
Compiler Optimisation
5 – Instruction Selection

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019

Introduction

This lecture:
Naive translation and ILOC
Cost based instruction selection
Bottom up tiling on low level AST
Alternative approach based on peephole optimisation
Super-optimisation
Multimedia code generation

Code generation

Aim to generate the most efficient assembly code
Decouple problem into three phases:

Instruction selection
Instruction scheduling
Register allocation

In general phases NP-complete and strongly interact
In practise good solutions can be found
Instruction scheduling : would like to automate wherever
possible – re-targetable ISA specific translation rules plus
generic optimiser

ILOC
Instruction set review

Typical ILOC instructions (EaC Appendix A)
load r1 ⇒r2 r2 = Mem[r1]

loadI c1 ⇒r1 r1 = c1
loadAI r1, c1 ⇒r2 r2 = Mem[r1 + c1]
loadA0 r1, r2 ⇒r3 r3 = Mem[r1 + r2]
store r1 ⇒r2 Mem[r2] = r1

storeAI r1 ⇒r2, c1 Mem[r2 + c1] = r1
storeA0 r1 ⇒r2, r3 Mem[r2 + r3] = r1

i2i r1 ⇒r2 r2 = r1
add r1, r2 ⇒r3 r3 = r1 + r2

addI r1, c1 ⇒r2 r2 = r1 + c1
Similar for arithmetic, logical, and shifts

jump r1 PC = r1
jumpI l1 PC = l1

cbr r1 ⇒l1, l2 PC = r1 ? l1 : l2

ILOC

Many ways to do the same thing
If operators assigned to distinct functional units - big impact

Different ways to move register, ri ⇒ rj

i2i ri ⇒rj
addI ri , 0 ⇒rj
subI ri , 0 ⇒rj

multI ri , 1 ⇒rj
divI ri , 1 ⇒rj

lshiftI ri , 0 ⇒rj
rshiftI ri , 0 ⇒rj

and ri , ri ⇒rj
orI ri , 0 ⇒rj

xorI ri , 0 ⇒rj

ILOC
Naïve selection

Simple walk through of first lecture generates inefficient code
Takes a naive view of location of data and does not exploit
different addressing modes available

Different code to compute g * h

Assume g and h in global spaces G and H, both at offset 4

loadI @G ⇒r5
loadI 4 ⇒r6

loadA0 r5, r6 ⇒r7
loadI @H ⇒r8
loadI 4 ⇒r9

loadA0 r8, r9 ⇒r10
mult r7, r10 ⇒r11

loadI 4 ⇒r5
loadAI r5,@G ⇒r6
loadAI r5,@H ⇒r7

mult r6, r7 ⇒r8

Instruction selection via tree pattern matching

IR is in low level AST form exposing storage type of operands
Tile AST with operation trees generating < ast, op > i.e. op
could implement abstract syntax tree ast
Recursively tile tree and bottom-up select the cheapest tiling -
locally optimal.
Overlaps of trees must match

destination of one tree is the source of another
must agree on storage location and type - register or memory,
int or float, etc

Operations are connected to AST subtrees by a set of
ambiguous rewrite rules
Rules have costs - ambiguity allows cost based choice

Instruction selection via tree pattern matching
Rewrite rules

Subset of rules
Id Production Code Template
1: Reg → Lab loadI lbl ⇒rnew
2: Reg → Num loadI n1 ⇒rnew
3: Reg → Ref (Reg) load r1 ⇒rnew
4: Reg → Ref (+(Reg1,Reg2)) loadA0 r1, r2 ⇒rnew
5: Reg → Ref (+(Reg ,Num)) loadAI r1, n1 ⇒rnew
6: Reg → +(Reg1,Reg2)) add r1, r2 ⇒rnew
7: Reg → +(Reg ,Num)) addI r1, n1 ⇒rnew
8: Reg → +(Num,Reg)) addI r1, n1 ⇒rnew

Instruction selection via tree pattern matching
Rewrite rules

Begin tiling the AST bottom up

Instruction selection via tree pattern matching
Rewrite rules

Code produced
loadI @G ⇒r1
loadI 12 ⇒r2

add r1, r2 ⇒r3
load r3 ⇒r4

loadI 2 ⇒r5
add r4, r5 ⇒r6

Bad tiling: productions used
1: Reg → Lab loadI lbl ⇒rnew
2: Reg → Num loadI n1 ⇒rnew
3: Reg → Ref (Reg) load r1 ⇒rnew
6: Reg → +(Reg1,Reg2)) add r1, r2 ⇒rnew

Instruction selection via tree pattern matching
Rewrite rules

Many different sequences available
Selecting lowest cost bottom-up gives

Code produced
loadI @G ⇒r1

loadAI r1, 12 ⇒r2
addI r2, 2 ⇒r3

Good tiling: productions used
1: Reg → Lab loadI lbl ⇒rnew
5: Reg → Ref (+(Reg ,Num)) loadAI r1, n1 ⇒rnew
8: Reg → +(Num,Reg)) addI r1, n1 ⇒rnew

Instruction selection via tree pattern matching
Cost based selection

Examples assume all operations are equal cost
Certain ops may be more expensive - divs
Cost of bottom matching can be reduced using table lookups

Peephole selection

Other approaches available - peephole optimisation
Expand code into operations below machine level
Simplify by rules over sliding window
Match against machine instructions

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r12 ← 12
r13 ← r11 + r12
r14 ← M(r13)
r15 ← r10 × r14
r16 ← −16
r17 ← rarp + r16
r18 ← M(r17)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

Elaborate into very low-level code

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r12 ← 12
r13 ← r11 + r12
r14 ← M(r13)
r15 ← r10 × r14
r16 ← −16
r17 ← rarp + r16
r18 ← M(r17)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

First window, no simplification available; advance window

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r12 ← 12
r13 ← r11 + r12
r14 ← M(r13)
r15 ← r10 × r14
r16 ← −16
r17 ← rarp + r16
r18 ← M(r17)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

Substitute r12 into r13; r12 dead so remove

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r13 ← r11 + 12
r14 ← M(r13)

r15 ← r10 × r14
r16 ← −16
r17 ← rarp + r16
r18 ← M(r17)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

Substitute r13 into r14; r13 dead so remove

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r16 ← −16
r17 ← rarp + r16
r18 ← M(r17)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

No simplification available; advance window

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r16 ← −16
r17 ← rarp + r16
r18 ← M(r17)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

No simplification available; advance window

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r16 ← −16
r17 ← rarp + r16
r18 ← M(r17)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

Substitute r16 into r17; r16 dead so remove

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r17 ← rarp − 16
r18 ← M(r17)

r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

Substitute r17 into r18; r17 dead so remove

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r18 ← M(rarp − 16)
r19 ← M(r18)

r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

No simplification available; advance window

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r18 ← M(rarp − 16)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

No simplification available; advance window

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r18 ← M(rarp − 16)
r19 ← M(r18)
r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

No simplification available; advance window

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r18 ← M(rarp − 16)
r19 ← M(r18)

r20 ← r19 − r15
r21 ← 4
r22 ← rarp + r21
M(r22) ← r20

Substitute r21 into r22; r21 dead so remove

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r18 ← M(rarp − 16)
r19 ← M(r18)

r20 ← r19 − r15
r22 ← rarp + 4
M(r22) ← r20

Substitute r22 into M(r22); r22 dead so remove

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r18 ← M(rarp − 16)
r19 ← M(r18)

r20 ← r19 − r15
M(rarp + 4) ← r20

No more code to bring into window

Peephole instruction selection

Selection for: b − 2 ∗ c
r10 ← 2
r11 ← @G
r14 ← M(r11 + 12)
r15 ← r10 × r14
r18 ← M(rarp − 16)
r19 ← M(r18)
r20 ← r19 − r15
M(rarp + 4) ← r20

Simplified code is 8 instructions versus 14

Peephole instruction selection

Selection for: b − 2 ∗ c
loadI 2 ⇒ r10
loadI @G ⇒ r11

loadAI r11 + 12 ⇒ r14
mult r10, r14 ⇒ r15

loadAI rarp,−16 ⇒ r18
load r18 ⇒ r19
sub r19, r15 ⇒ r20

storeAI r20 ⇒ rarp, 4

Match against machine instructions

Peephole selection

Works well with linear IR and gives in practise similar
performance
Sensitive to window size - difficult to argue for optimality
Needs knowledge of when values are dead
Has difficulty handling general control-flow

Super-optimisation

Super-optimisers search for the best instruction sequence
Generally very slow - minutes, hours, or weeks!
Only suitable for very small, hot kernels

Super-optimisation
Massalin’s super-optimiser

Start with length k = 1
Generate all instruction sequences of length k
Run test cases to compare behaviour to original code

If success, return sequence else increase length
Test cases not correctness guarantee

Super-optimisation
Massalin’s super-optimiser

Start with length k = 1
Generate all instruction sequences of length k
Run test cases to compare behaviour to original code
If success, return sequence else increase length

Test cases not correctness guarantee

Super-optimisation
Massalin’s super-optimiser

Start with length k = 1
Generate all instruction sequences of length k
Run test cases to compare behaviour to original code
If success, return sequence else increase length
Test cases not correctness guarantee

Denali: A goal directed super-optimiser

Super-optimiser. Attempt to find optimum code - not just
improve.
“Denali: A goal directed super-optimizer” PLDI 2002 by
Joshi, Nelson and Randall. Expect you to read, understand
and know this
Based on theorem proving over all equivalent programs. Basic
idea: use a set of axioms which define equivalent instructions
Generate a data structure representing all possible equivalent
programs. Then use a theorem prover to find the shortest
sequence
“There does not exist a program k cycles or less”. Searches all
equivalence to disprove this. Theorem provers designed to be
efficient at this type of search

Denali: A goal directed super-optimiser
Structure

Denali: A goal directed super-optimiser
Axioms

Axioms are a mixture of generic and machine specific for Alpha
4 = 22 – generic
(∀k, n :: k∗2n = k<<n) – machine specific
(∀k, n :: k∗4+n = s4addl(k, n))

Denali: A goal directed super-optimiser
E-graph

Equivalences represented in an E-graph.
O(n) graph can represent O(2n) distinct ways of computing term

Match expression 1 + reg6 * 4
+

1*

reg6 4

+

1*

reg6 4

1*

+

reg6 4 **

<<

2

+

* 1

**4reg6

<<

2

2 2 2 2

**

22

s4addl

Dashed lines denote equivalences (matches)

Denali: A goal directed super-optimiser
Unknowns

Once equivalent programs represented, now need to see if there is
a solution in K cycles.
Unknowns:

L(i ,T) Term T started at time i
A(i ,T) Term T finished at time i
B(i ,Q) Equivalence class Q finished by time i

Need constraints to solve.
Let λ(T) = latency of term T

Denali: A goal directed super-optimiser
Constraints

∧
i ,T (L(i ,T)⇔ A(i + λ(T)− 1,T)) – arrives λ cycles after

being launched∧
i ,T

∧
Q∈args(T)(L(i ,T)⇒ B(i − 1,Q)) –operation cannot be

launched till args ready∧
Q∈G)B(K − 1,Q) – all terms in the goal must be finished

within K cycles

Now test with a SAT solver setting K to a suitable number.
Generates excellent code
Finds best code fast. Approximate memory latency, limited
implementation

Multimedia code

Re-targetable code generation key issue in embedded
processors
Heterogeneous instruction sets. Restrictions on function units.
Exploiting powerful multimedia instructions
Standard Code generation seems completely blind to
parallelism. Shorter code may severely restrict ILP
Denali gets around this but expensive
Multimedia instructions are often SIMD like. Need
parallelisation techniques. Middle section of lectures.

Summary

Naive translation and ILOC
Cost based instruction selection
Bottom up tiling on low level AST
Alternative approach based on peephole optimisation
Super-optimisation
Multimedia code generation

PPar CDT Advert

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

