
Compiler Optimisation
4 – Dataflow Analysis

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019

Introduction

This lecture:
Data flow termination
More data flow examples
Dominance
Static single-assignment form

Data flow termination

Fixed Point
A fixed point, x , of function f : T → T is when f (x) = x

Partial ordering
A binary relation, ≤, among elements of a set, S, that is:

∀a ∈ S, a ≤ a reflexive
∀a, b ∈ S, a ≤ b ∧ b ≤ a =⇒ a = b antisymmetric

∀a, b, c ∈ S a ≤ b ∧ b ≤ c =⇒ a ≤ c transitive

Partially ordered set (poset)
A set with a partial order

Data flow termination

Join semi-lattice
Partially ordered set that has a join (a least upper bound) for any
nonempty finite subset

∀x , y , z ∈ V
x ∧ (y ∧ z) = (x ∧ y) ∧ z Associativity

x ∧ y = y ∧ x Commutativity
x ∧ x = x Idempotency
> ∧ x = x Top element

Note, meet semi-lattice has ⊥and complete lattice has both
Often just use ‘semi-lattice’

Data flow termination
Lattices

Example lattice

Hasse diagram for the set of all subsets of x , y , z , ordered by
inclusion

Is it a lattice?

Data flow termination
Lattices

Example lattice

Hasse diagram for the set of all subsets of x , y , z , ordered by
inclusion

Yes, and is lattice for LiveOut, with variables, x , y , z

Data flow termination
Lattices

Example non-lattices

Data flow termination
Lattices

Example non-lattices

Left: c and d have no common upper bound

Data flow termination
Lattices

Example non-lattices

Right: b and c have common upper bounds (d, e, f), but no least
upper bound

Data flow termination

Each block or statement has a particular function, e.g. based on
Kill and Gen sets
Let F be the set of transfer functions
Sufficient termination constraints
V and ∧ for a semi-lattice
F has identity: I(x) = x , ∀x ∈ V
F is closed under composition: ∀f , g ∈ F , h = f ◦ g ∈ F
F is monotonic: ∀f ∈ F , f (x ∧ y) ≤ f (x) ∧ f (y)

See 10.11

Liveness

A variable v is live-out of statement s if
v is used along some control path starting at s

Otherwise, we say that v is dead
A variable is live if it holds a value that may be needed in the
future

Information flows backwards from statement to predecessors
Liveness useful for optimisations (e.g. register allocation, store
elimination, dead code...)

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

A variable v is live-out of statement s if v is used along some
control path starting at s

Liveness

Live variables come up from their successors using them
Out(s) =

⋃
∀n∈Succ(s)

In(n)

Transfer back across the node
In(s) = Out(s)− Kill(s) ∪ Gen(s)
Used variables are live
Gen(s) = {u such that u is used in s}
Defined but not used variables are killed
Kill(s) = {d such that d is defined in s but not used in s}
If we don’t know, start with empty
Init(s) = ∅

Others

Constant propagation - show variable has same constant value
at some point

Strictly speaking does not compute expressions
except x := const, or x := y and y is constant
Often combined with constant folding that computes
expressions

Copy propagation - show variable is copy of other variable
Available expressions - set of expressions reaching by all paths
Very busy expressions - expressions evaluated on all paths
leaving block - for code hoisting
Definite assignment - variable always assigned before use
Redundant expressions, and partial redundant expressions
Many more - read about them!

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

What direction?
What value set?
What transfer?
What Meet?
Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

What direction?
What value set?
What transfer?
What Meet?
Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
What value set?
What transfer?
What Meet?
Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
What value set?
What transfer?
What Meet?
Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
What transfer?
What Meet?
Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
What transfer?
What Meet?
Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
Transfer: Out(n) = In(n) ∪ {n}
What Meet?
Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
Transfer: Out(n) = In(n) ∪ {n}
What Meet?
Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
Transfer: Out(n) = In(n) ∪ {n}
Meet: In(n) =

⋂
∀n∈Pred(s)

Out(s)

Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
Transfer: Out(n) = In(n) ∪ {n}
Meet: In(n) =

⋂
∀n∈Pred(s)

Out(s)

Initial values?

Dominators

CFG node bi dominates bj , written bi � bj ,
iff every path from the start node to bj goes through bi

Design data flow equations to compute
which nodes dominate each node

Direction: Forward
Values: Sets of nodes
Transfer: Out(n) = In(n) ∪ {n}
Meet: In(n) =

⋂
∀n∈Pred(s)

Out(s)

Initial: Init(n0) = {n0}; Init(n) = all

Dominators
Post-dominator
Node z is said to post-dominate a node n if all paths to the exit
node of the graph starting at n must go through z

Strict dominance
Node a strictly dominates b iff a � b ∧ a 6= b

Immediate dominator
idom(n) strictly dominates n but not any other node that strictly
dominates n

Dominator tree
Tree where node’s children are those it immediately dominates

Dominance frontier
DF (n) is set of nodes, d s.t. n dominates an immediate
predecessor of d , but n does not strictly dominate d

Dominators

Example: Dominator tree

Where are dominance frontiers?

Dominators

Example: Dominator tree

DF (b5) = {b3}

Dominators

Example: Dominator tree

DF (b1) = {b1}

Static single-assignment form (SSA)

Often allowing variable redefinition complicates analysis
In SSA:

One variable per definition
Each use refers to one definition
Definitions merge with φ functions
Φ functions execute instantaneously in parallel

Used by or simplifies many analyses

Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Original CFG

Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Rename multiple definitions of same variable

Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Repeatedly merge definitions with φ

Static single-assignment form (SSA)

Example: Intuitive conversion to SSA

Now in SSA form

Static single-assignment form (SSA)
Types of SSA

Maximal SSA - Places φ node for variable x at every join
block if block uses or defines x

Minimal SSA - Places φ node for variable x at every join
block with 2+ reaching definitions of x

Semipruned SSA - Eliminates φs not live across block
boundaries
Pruned SSA - Adds liveness test to avoid φs of dead
definitions

Static single-assignment form (SSA)
Conversion to SSA sketch2

For each definition1 of x in block b, add φ for x in each block
in DF (b)
This introduces more definitions, so repeat
Rename variables
Can be done in T (n) = O(n), if liveness cheap

1Different liveness tests (including none) here change SSA type
2See EaC 9.3.1-9.3.4

Static single-assignment form (SSA)
Conversion from SSA sketch3

Cannot just remove φ nodes; optimisations make this unsafe
Place copy operations on incoming edges
Split edges if necessary
Delete φs
Remove redundant copies afterwards

3See EaC 9.3.5

Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Original SSA CFG

Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Place copies

Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Split where necessary

Static single-assignment form (SSA)
Conversion from SSA

Example: Intuitive conversion from SSA

Remove φs

Static single-assignment form (SSA)
Extensions

Dataflow assumes that all paths in the CFG are taken hence
conservative approximations

Guarded SSA attempts to overcome this by having additional
meet nodes γ, η and µ to carry conditional information around

Arrays considered monolithic objects A[1] = .., =A[2]
considered a def-use

Array based SSA models access patterns4

Inter-procedural challenging. Pointers destroy analysis! Large
research effort in points-to analysis.

4Can be generalised using Presburger formula

Static single-assignment form (SSA)
Constant propagation

Three possible values per variable

> Not a constant
k Constant value k
⊥ Not computed (maybe never)

Meet is > ∧ x = x ,⊥ ∧ x = ⊥, c ∧ c = c, c ∧ d = ⊥if c 6= d
Transfer functions compute value if all inputs are constant

Summary

Data flow termination
More data flow examples
Dominance
Static single-assignment form

PPar CDT Advert

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

