Compiler Optimisation

4-from-ssa — Conversion from SSA (addendum)

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019

Introduction

Things to watch out for when converting from SSA.

o Effect of optimisation
o Critical edges
@ Lost copy problem

@ Swap problem

Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

[a=x+

y
b = + v

b

Just a basic block

]
[)
[a =17 }
[J

cC =X + Yy

Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

[a0= %0+ v,
[b0= Xot Vo
[a,= 17

[co= %6+ vo

)
J
1
)

Convert to SSA.
Note that by and ¢y are copies of ag

Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

[ao: Xt Yo

b,= a - ;
O s Optimise the redundant expressions.

1
[)
[a,= 17 } What will happen if we merge variables
[)

now?

Co= Qg

Effect of Optimisation

Optimisations can prevent conversion by just merging variables

[a=x+y

If we merge ap and a; back into a,
then c gets the wrong value

)
-2
|

[a =17

[CcC = a (X+y)}

So, keep variables, use copies in predecessors of ¢ nodes?

LAs in lecture-3.

Critical Edges

Copies on predecessors difficult with critical edges.

Critical Edge

A CFG edge whose destination has
multiple predecessors and whose source
has multiple successors.

a,=¢(ay,a3)

Source has multiple successors: a copy in the source means all of
its successors get the copy. If the copy is live into them then
potential semantics change.

Destination has multiple predecessors: If there was only one, we
could put the copy in the destination and probably wouldn't need
the phi node anyway

Lost copy problem

@ Most SSA algorithms split critical edges
@ Next example shows necessary splitting to prevent lost copy

Lost copy problem

]

A simple loop

1
aL

i+l

g Convert to SSA
y + ..

Lost copy problem

i,= 1

Converted to SSA

Yo now redundant

Optimisation: Replace
uses with i1 and

o= yo + remove definition

0= Yo ..

Lost copy problem

i,= 1

Yo removed

Try to convert from
SSA

Place copies without
splitting

Lost copy problem

Copies placed

Now remove ¢

Lost copy problem

dp= 1 Note: Back edge is
- i, critical and i1 is live in
to loop exit

Does zy use the same
version of i1 as before
the copy?

Instead, split loop's
back edge

Lost copy problem

: Edge split keeps

semantics

Extra jump can be
expensive inside hot
loops

Instead, use
temporaries to
remember correct
values

Lost copy problem

i= 1

Extra temporary
in place

Swap problem

@ ¢ nodes execute simultaneously in parallel
o i.e. All read their operands at once, before any assignments

@ Copies do not
o Naive conversion with copies can cause incorrect behaviour

Simultaneous phis, Naive copy, Temporary inserted
swap values swap lost?
t=Xx1
x1 = ¢(x0,¥1) X1 =y X1 = y1
y1 = ¢(y0,x1) nn=x n=t

2Assume x1 = Xo, y1 = yo placed in another block.

PPar CDT Advert

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

* 4-year programme: Research topics in software,
MSc by Research + PhD hardware, theory and

application of:

» Parallelism

» Concurrency

» Distribution

« Research-focused:
Work on your thesis topic
from the start

Full funding available
« Collaboration between:
» University of Edinburgh’s
School of Informatics Industrial engagement
* Ranked top in the UK by programme includes
2014 REF internships at leading
» Edinburgh Parallel Computing companies
Centre
* UK's largest supercomputing
centre

A i
informatics

Research Council

