
Compiler Optimisation
4-from-ssa – Conversion from SSA (addendum)

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019

Introduction

Things to watch out for when converting from SSA.

Effect of optimisation
Critical edges
Lost copy problem
Swap problem

Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

Just a basic block

Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

Convert to SSA.
Note that b0 and c0 are copies of a0

Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

Optimise the redundant expressions.
What will happen if we merge variables
now?

Effect of Optimisation

Optimisations can prevent conversion by just merging variables

Example

If we merge a0 and a1 back into a,
then c gets the wrong value

So, keep variables, use copies in predecessors of φ nodes1

1As in lecture-3.

Critical Edges

Copies on predecessors difficult with critical edges.

Critical Edge
A CFG edge whose destination has
multiple predecessors and whose source
has multiple successors.

Example

Source has multiple successors: a copy in the source means all of
its successors get the copy. If the copy is live into them then
potential semantics change.
Destination has multiple predecessors: If there was only one, we
could put the copy in the destination and probably wouldn’t need
the phi node anyway

Lost copy problem

Most SSA algorithms split critical edges
Next example shows necessary splitting to prevent lost copy

Lost copy problem

Example

A simple loop

Convert to SSA

Lost copy problem

Example

Converted to SSA

y0 now redundant

Optimisation: Replace
uses with i1 and
remove definition

Lost copy problem

Example

y0 removed

Try to convert from
SSA

Place copies without
splitting

Lost copy problem

Example

Copies placed

Now remove φ

Lost copy problem

Example
Note: Back edge is

critical and i1 is live in
to loop exit

Does z0 use the same
version of i1 as before
the copy?

Instead, split loop’s
back edge

Lost copy problem

Example
Edge split keeps

semantics

Extra jump can be
expensive inside hot
loops

Instead, use
temporaries to
remember correct
values

Lost copy problem

Example

Extra temporary
in place

Swap problem

φ nodes execute simultaneously in parallel
i.e. All read their operands at once, before any assignments

Copies do not
Naive conversion with copies can cause incorrect behaviour

Example
Simultaneous phis,
swap values

x1 = φ(x0,y1)
y1 = φ(y0,x1)

Naive copy,
swap lost2

x1 = y1
y1 = x1

Temporary inserted

t = x1
x1 = y1
y1 = t

2Assume x1 = x0, y1 = y0 placed in another block.

PPar CDT Advert

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

