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Introduction

Optimisations often split into
Analysis: Calculate some values at points in program
Transformation: Improve the program where analysis allows

Data flow analyses are common class of analyses
Data pushed around control flow graph simulating effect of
statements
This lecture introduces:

Reaching definitions analysis in detail
Algorithms to compute data flow



Reaching definitions

Definition of variable x at program point d reaches point u if
∃ control-flow path p from d to u such that
no definition of x appears on that path

Where do definitions of a reach?
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Reaching definitions
Local analysis

Local analysis works only on a single basic block.
Computation by simulation or abstract interpretation1

Maintain a set of current reaching definitions
At the start node, there are no definitions
Go through all the statements from start to end
If assignment statement xi := ...

First, ∀j remove xj
Then, add xi to the set

Otherwise set unchanged

1Execute only bits we care about, namely where definitions reach
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Reaching definitions
Global analysis

Control flow complicates matters
Consider reaching definitions:

Entering a statement - the In program point for the statement
Leaving a statement - the Out program point for the statement

Root is a special start node
We will try the previous approach on this and see where it fails



Reaching definitions
Global analysis

Control flow example; try the previous approach



Reaching definitions
Global analysis

s4 has 2 predecessors; and don’t know Out(s6)



Reaching definitions
Global analysis

But, we know at least that a1 reaches s4



Reaching definitions
Global analysis

s5 has 2 predecessors



Reaching definitions
Global analysis

All incoming definitions reach; do union



Reaching definitions
Global analysis

Inconsistency now we know more about Out(s6)



Reaching definitions
Global analysis

All incoming definitions reach; do union; inconsistency



Reaching definitions
Global analysis

Inconsistency



Reaching definitions
Global analysis

Consistent state



Reaching definitions
Dataflow equations

Let us formalise our intuition

To simulate a statement, s, compute Out(s) from In(s)
If assignment to x , delete all definitions of x , add new
definition

Out(s : di := ...) = (In(s)− {dj ;∀j}) ∪ {di}
Multiple edges must merge to compute In(s) from Pred(s)
All incoming definitions reach

In(s) =
⋃

∀p∈Pred(s)
Out(p)

If we don’t know, start with empty
Init(s) = ∅

Note that often Out(s) is written
Out(s : di := ...) = (In(s)− Kill(s)) ∪ Gen(s)

The Gen and Kill sets can often be precomputed
Also, EaC combines In and Out to use only one equation
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Reaching definitions
Observations

Analysis defines properties at points with recurrence relations
Assumes a control flow graph
Start with a conservative approximation
Refine the approximations
Stop when consistent (no further change)
Information flows forward from a statement to its successors



Ingredients of dataflow analysis

Direction - forward or backward

Transfer function - computes statement effect
e.g. Out(s) = Gen(s) ∪ (In(s)− Kill(s))

Meet operator - merges values from multiple incoming edges
e.g. In(s) =

⋃
∀p∈Pred(s)

Out(p)

Value set - the bits information being passed around
e.g. Sets of definitions

Initial values
Should be most conservative value
Start node often a special case; e.g. encoding function
parameters

Some properties of the above to ensure termination2

2In a later lecture
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Algorithms
Round-robin iterative algorithm

for each node3, n, do
Initialise n

while values changing do
for each node do

Apply meet and transfer function

There are many, many data flow algorithms that fit

3Note, node not statement. Include special start node



Algorithms
Round-robin iterative algorithm

Reaching definitions control flow example - Calculate RD sets?

In(s) =
⋃

∀p∈Pred(s)
Out(p)

Out(s : di := ...) = (In(s)− {dj ; ∀j}) ∪ di
⇓

RD(s) =
⋃

∀p:di=...∈Pred(s)
(RD(p)− {dj ;∀j}) ∪ {di}

Node s1 s2 s3 s4 s5 s6
RD4 ∅ ∅ ∅ ∅ ∅ ∅

∅ a1 a1 a1 a1, a3, b a1, a3, b, c
∅ a1 a1 a1, a3, b, c a1, a3, b, c a1, a3, b, c
∅ a1 a1 a1, a3, b, c a1, a3, b, c a1, a3, b, c

4For brevity, In and Out are combined
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Algorithms
Termination

Does round robin for reaching definitions always terminate?

Yes

Each step of the iteration can only grow a set or leave
unchanged
Finite number of elements in each set, so finite number of
times can change
Each iteration either has a change or stops
Must terminate
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Algorithms
Speeding up

Round-robin algorithm is slow, may require many passes
through nodes
Can speed up by considering basic blocks (e.g. compute Gen
and Kill for whole block)
Only nodes which have inputs changed need to be processed -
use work list
Reducible graphs can be handled more efficiently (see EaC
p.527)



Algorithms
Order matters

May reduce number of iterations by changing evaluation order5

Backward analysis - evaluate node after successors
Use postorder
Forward analysis - evaluate node before successors
Use reverse postorder

Orders for reaching definitions example

Post(1) s4s6s5s3s2s1
Post(2) s6s5s4s3s2s1
Rev(1) s1s2s3s5s6s4
Rev(2) s1s2s3s4s5s6

5A lot of theory about this. Given certain conditions then a round-robin
postorder alg will finish in d(G) + 3 passes where d(G)is the loop
connectedness. Muchnick for more details



Algorithms
Limitations

Data flow analyses have some limitations:
Static analysis may be very conservative
True CFG generally undecidable

(e.g. condition may be constant but unprovable)
Pointers introduce aliases

E.g. *x = 10; Does x point to another variable, y or z? That
would give a definition of y or z. May not know at
compile time which
Precise alias analysis not solved

Array access
Generally cannot tell which indices are used

Function calls may not be reasoned across
If inter-procedural, virtual calls and function pointer expand
sets of functions



Algorithms
Path sensitive dataflow

Some IRs/analyses force different information along edges
Range analysis: compute possible ranges of integers; must
know which edge out of if
Java exception: change the stack contents

Each edge has a label - (e.g. THEN, ELSE, EXCEPTION)
Transfer function includes label as argument



Summary

Reaching definitions
Data flow algorithms
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