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Machine Learning for Compilers
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Huge number of variables Nondeterministic machines
NP-hard or worse Many components
Keep changing Keep changing
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Compilers are hard




Machine Learning to the Rescue

N\, Rerun on

Learn from examples |

; U “ dake heuristic ~ —



ummarise the Program

Program IR Features

(AST, CFG, DDG, etc.)

Number of instructions ,

int main(int argc, char** argv) { Mean dependency depth .'
printf (“Hello, World!”) ; o §
return O; j e .\
Trip count :

Loop nest level | -




Gather Examples

Features

Best parameters




Learn a Model

S N

Supervised
Machine |
Learner

. . s

Best parameters




What is a Model?

® Fitacurve

| o
Optimisation | ° o to examples

Decision

Feature



What is a Model?

®  The curveis
| ®  the model



What is a Model?

Prediction

~1s looking

g

up value on
curve

New Program



Use the Model

New Program Predicted
Features parameters




Generating Benchmarks




What we want.

.........




What we get.

.........




Learn the Wrong Thing!
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problem statement

1. more benchmarks = better models

Principle Component 1 —
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problem statement

1. more benchmarks = better models
2. there aren’t enough benchmarks

#. benchmarks used
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problem statement

1. more benchmarks = better models
2. there aren’t enough benchmarks

avg compiler paper =17

Iris dataset = 150

MNIST dataset = 60,000
ImageNet dataset = 10,000,000



problem statement

1. more benchmarks = better models

2. there aren’t enough benchmarks

3. benchmarks must be diverse

AMD NPB NVIDIA Parboil Polybench Rodinia SHOC
AMD - 38.0% 74.5% 76.7% 21.7% 45.8% 35.9%
NPB 22.7% - 45.3% 36.7% 13.4% 16.1% 23.7%
NVIDIA 29.9% 37.9% - 21.8% 78.3% 18.1% 63.2%
Parboil 89.2% 28.2% 28.2% - 41.3% 73.0% 33.8%
Polybench 58.6% 30.8% 45.3% 11.5% - 43.9% 12.1%
Rodinia 39.8% 36.4% 29.7% 36.5% 46.1% - 59.9%
SHOC 42.9% 71.5% 74.1% 41.4% 35.7% 81.0% -




problem statement

1. more benchmarks = better models
2. there aren’t enough benchmarks
3. benchmarks must be diverse




Human-like program generator

Model produces code
4.3x faster
than state of the art




old approach

[ lalnling HAd—hoc DriversH Training Data HPredictive I\/Iodeﬂ
programs

T

[ Datasets ]




our approach

Program Auto_matlc Training Data Predictive Model
Generator Driver

T

Dataset
Generator




our approach
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our approach
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= github

SOCIAL CODING




our approach
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= github
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Infer the common usage of a PL from samples.
Huge repository of public knowledge: g

And they have an API :-) 2.8 million lines of OpenCL

$ curl https://api.github.com/search/repositories\?
g\=opencl\&sort\=stars\&order\=desc

{
"total_count™: 3155,

"incomplete_results": false,

"items": [
{
"id": 7296244,
"name": "lwjgl3",
"full_name": "LWJIGL/1wjgl3",
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/* Copyright (C) 2014, Joe Blogs. */
#define CLAMPING
#define THRESHOLD_MAX 1.0f
float myclamp(float in) {
#ifdef CLAMPING
return in > THRESHOLD MAX ? THRESHOLD MAX : in < 0.0f ? 0.0f : in;
#else
return in;
#endif // CLAMPING
}
__kernel void findAllNodesMergedAabb( global float* in, _ global float* out,
int num elems)

{
// Do something really flipping cool
int id = get global id(0);
if (id < num _elems)
{
out[id] = myclamp(in[id]) ;
}



: S
/* Copyright (C) 2014, Joe Blogs. */ S‘Ylp comme“‘
#define CLAMPING
#define THRESHOLD MAX 1.0f pyepyocess
float myclamp(float in) {

1 LAMPIN i s
P e ; in < o.OfK.POW!l:‘e name

return in > THRESHOLD MAX ? THRESHOLD MAX : in; \e
#else f Yce (‘,Ode S‘Y
return in; E“ 0
#endif // CLAMPING
}
__kernel void findAllNodesMergedAabb( global float* in, _ global float* out,
int num elems)

{
// Do something really flipping cool
int id = get global id(0);
if (id < num _elems)
{
out[id] = myclamp(in[id]) ;
}



atrip comments

pyeprocess
Rewrite names
float A(float a) { Enf()fce cﬂde STV‘O

return a > 1.0£f ? 1.0£f : a < 0.0f ? 0.0f : a
}

kernel void B( global float* b, global float* c, int d) {
~ int e = get;EIobal_id(O); -
if (e < d) {
c[e] = A(b[e]);
}
}
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kernel void A(global float* a, const float b) {
a[get_global_id(0)] *= 3.14 + b;
}




el void A(global float* a, const float b) {
alget_global_id(0)] *= 3.14 + b;

\ Token Index
CIE] o)




kernel_void A(global float* a, const float b) {
a[get_global_id(0)] *= 3.14 + b;

}

§ Index

[space] | 1




kernel void A(global float* a, const float b) {
a[get_global_id(0)] *= 3.14 + b;




kernel void_A(global float* a, const float b) {
a[get_global/id(0)] *= 3.14 + b;

}




kernel void A(global float* a, const float b) {
a[get_global_jd(0)] *= 3.14 + b;




kernel void A(global float* a, const float b) {
a[get_global_id(0)] *= 3.14 + b;




kernel void A(global float* a, const float b) {




kernel void A(global_float* a, const float b) {
a[get_global_id(0)] *s/4




kernel void A(global float* a, const float b) {
a[get_global_id(0)] *= 3.14+ b;




kernel void A(global float* a, const float b) {

Token  Index

ofl1]l2][1]3]a][5][1]/6]{7




kernel void A(global float*_a, const float b) {

ofl1]l2]1]3]a][5[1]/6][7]{1




kernel void A(global float* a, const float b) {
a[get_global_id(0)] *= 3.14 + b;

Token  Index

of[t1flz2f1]3]a]|5][1][6][7][1]8




kernel void A(global float* a, const float b) {
a[get_global_id(0)] *= 3.14 + b;

get_global_id

0

oft1fl2f1]3]a][5][1][6][7][1]8

0N O Ok Wi
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synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: |o| 1|2 1

Output:

kernel ' void A ( global int double float

Decoded: kernel void




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: (o |1 /2|1

Output:

kernel ' void A ( global int double float

K | vOI
Decoded: ernel void




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input:

Output:

Decoded:

]
kernel

int

double float

kernel void A




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: (o ||1 (2| 1][3

Output:

kernel ' void A ( global int double float

Decoded: kernel void A




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: (o||1 /(2| 1|3

Output:

kernel ' void A ( global int double float

K | void A
Decoded: ernel void




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: o 1| 2|1

Output:

kernel I void

int double float

Decoded: kernel void A(




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: o 1/ (2] 13[4

Output:

kernel ' void A ( global int double float

Decoded: kernel void A(




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: (o] 1 (2| 13[4

Output:

kernel ' void A ( global int double float

Decoded: kernel void A(




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: (o] 1 (2| 13[4

Output:

kernel ' void A

int double float

Decoded: kernel void A(global




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: == [2[[1] 34| 5

Output:

kernel ' void A ( global int double float

Decoded: kernel void A(global




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.

Input: == [2]|1] 34| 5

D
3
/4
(N7
@

kernel ' void A ( global int double float

Decoded: kernel void A(global

Output:




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.
3. Gan we parse signature?
Yes: Generate input data, compile and run it.
No: Compile it but don’t run it.

kernel void A(global int* a) {

Decoded:




synthesizer + harness

1. Seed the model with the start of a program.
2. Predict tokens until { } brackets bhalance.
3. Gan we parse signature?
Yes: Generate input data, compile and run it.
No: Compile it but don’t run it.

kernel void A(global int* a) {

Decoded:




<dk __kernel void A(__global float* a,
__global float* b,
__global float* c,
const int d) {
int e = get_global_id(0);

float f = 0.0;

for (int g = 0; g < d; g++) {
c[g] = 0.0f;

}

barrier(1);

a[get _global id(0)] = 2*b[get _global id(0)];



__kernel void A(__global float* a,

__global float* b,
__global float* c,
const int d) {

int e = get_global id(9);

if (e >=d) {

return;
}
cle]

a[e] + b[e] + 2 * a[e] + b[e] + 4;



2] __kernel void A(__global float* a,

Q\Q __global float* b,
ng __global float* c,
<dk const int d) {

unsigned int e = get global id(0);
floatle f = (floatl6)(0.0);
for (unsigned int g = 0; g < d; g++) {
floatle h = a[g];
f.s0 += h.sO;
f.sl += h.s1;
/* snip ... */
f.sE += h.sE;
f.sF += h.sF;
}
b[e] = f.s0 + f.s1 + f.s2 + f.s3 + f.s4 +
f.s5 + f.s6 + f.s7 + £.s8 + £.59 + f.sA +
f.sB + f.sC + f.sD + f.sE + f.sF;

}
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Does it compile?

70% fail



Does it do anything?

Dynamic checks
o has output
 Input dependent
e deterministic

Yield 20-25%
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__kernel void A(__global float* a,

__global float* b,
__global float* c,
const float d,
const int e) {

int f = get global id(9);

if (f >=e) {

return;

}
c[f] = a[f] + b[f] + 2 * c[f] + d + 4;



__kernel void A(__global float* a,
__global float* b,

const int e) {
int f = get global id(9);
if (f >=e) {
return;

}
c[f] = a[f] + b[f] + 2 * c[f] + d + 4;

Payload for size S:

onc1'S  land)'s | fand0]’S | fand | S
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Listing 3: Sample 3 Listing 7: Sample 7

1 __kerncl void A{__global intx a, __global intx b, __global intx c. 1 __kernel void A(int a, int b, int c, __global const float+ d, __global
— __global intx d. const uint e) { <> const floatx e, __global float+ f, float g) {
2 const uint f = get_global_id (0); 2 const int I = gel_-local_id (0);
3 3 consl int i = pel-group-id (0);
4 if (e — 0 && £ — 0) 4
5 *d 0; 3 canst int j = 4 % i + h;
6 else il ([ < ¢) { [ canst int k = 4 %x i + h + a;
7 inl g =b []; 7 if (4 = i +h + < c) 1
& nint h = e’ f]; 8 float 1 = 0.0;
9 if (g> o) { 9 float m 0.0;
alh] = f 10 float n 0.0;
h—+; 11 const float o d[3 = (4 * i + h + a)];
12 const float p =d[3 = (4 *+ i + h + a) + 1];
if (f — e — 1) 13 const float g =d[3 = (1 *+ 1 + h + a) + 2]:
*d h; 14 for (int r = 0; r < ¢; r+4) {
} const float s = d[3 = r] 0;
} const float t = d|[3 = r + 1] — p;
u=d| r + 2] — q;
= ( *r]—o)*(d[3xr]—o)+(d[3xr—l]—
Listing 4: Sample 4 (3= r+ 1] —p) + (A3 » x4 2] —q) = (d[3 « x4+
_-kernel void A{__global floal> a, __global [loatx /f ['I\Id[S * r] — o) = (d[3 r] —‘o) — (d[3 =
— const int d) { (df3 = r + 1] p) + (d[3 = r 27— q) « (d
int e = get global id (0); q) + g) * sqrt ((d[3 = r] o) * (d3  r]
r 4+ 1] p) * (d[3 = r + 1] p) (d3 x r + 2]
if(e«;d){ 3« r + 2] —a) —g));
float f = blel; — 0) * w;
float g = [ l; — P) % W;
ale] — f = 3.141592f / (f = 1.0f + e * 1024 — f)gm (0.5 « 1.0f 22 - a) *w;
< [/ 18.0f + e / 2.0f); 33
} 23 = 11
for (¢ = 0: ¢ < 305 et++) { 26 =1
cle] = 0: 27
1 28
}
Listing 10: Sample 10
Listing 4: Samplc 4 1 __kernel void A(--global ulong *a) {
1 kernel void Alint a, global !'loat* b, global intx c, global intx é lslt]:u::": JS(’) c.8;
. . = d, --local intx e, int £ { 4 struct S0* p.7 — &c._8;
2 int g = gctl_.l(l(‘:u‘l_ld 0); 5 struct S0 ¢.9 = {
B e[get.local.id (0)] = O; 6 { {0x43250E6DL ,2TUL}, {0x43250F6D1,2TL},{ 0x43250R6DLL, 2 UL},
1 barrier (1)5 7 {0x43250E6DL ,2UL}, {0x43250E6DL ,2UL} ,{0x43250E6DL ,2UL},
5 while (g < f) { 8 {0x43250E6DL ,2TUL} ,{0x43250E6DL ,2 UL} },
S int ho=clel; 9 0x4BF90EDCAD2086BDL,
(8 if (bt —1) { . i(l) C:S = c.9;
9 __global floatx i = b 4+ g % a; 12 barrier (0 | 1);
10 float i = 0: . i



humanorrobot.uk

Round 1 Player: 1010, Robot: 938

__kernel void A(__global int* a, _ global int* b, _ global int* c, int d) {
int e = get_global_1id(0);

if (e >=d) {
return;
} else {
ale] = ale];
}
b[d] = e;

Score

Rounds Played

1000

990

980

970

960

950

Games

About

alpha bravo
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/1 programs, 1,000 synthetic benchmarks. 4.30x faster



Deep Learned Heuristics




Best
Decisions

Training e — . Optimization
Programs ~ - = Training Data Heuristic

{ Feature
Extractor

N
A\
N

Feature
Vectors

S

4 1 havd to get n@ht
/b 2. time cowsumw»@

\1\

the humaw bLt'

=2. VB‘P&tLtLOM,S



irrelevant incomplete unsuitable

e.g. not capturing the right R
information e.g. missing critical .
information e.g. wrong combination of

features / model
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Heuristics without features

Beats expert approach

Learning across heuristics
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Portable Mapping of Data Parallel Programs
to OpenCL for Heterogeneous Systems

Dominik Grewe ~ Zheng Wang ~ Michael EP. O'Boyle
School of Informatics, University of Edinburgh
{dominik grewe, zh.wang)}@ed.ac.uk, mobQ@inf.ed.ac.uk

Abstract

General purpose GPU based systems are highly atiractive as
they give potentially massive performance at litle cost. Re-
alizing such potential is challenging due to the complexity
of programming. This paper presents a compiler based ap-
proach to automatically generate optimized OpenCL code
from data-parallel OpenMP programs for GPUs. Such an
approach brings together the benefits of a clear high lev-
el language (OpenMP) and an emerging standard (OpenCL)
for heterogeneous multi-cores. A key feature of our scheme
is that it leverages existing transformations, especially data
transformations, to improve performance on GPU architec-
tures and uses predictive modeling to automatically dete
mine if it is worthwhile running the OpenCL code on the
GPU or OpenMP code on the multi-core host. We applied
our approach to the entire NAS parallel benchmark suite
and evaluated it on two distinct GPU based systems: Core
i7/NVIDIA GeForce GTX 580 and Core i7/AMD Radeon
7970 We achieved average (up t0) speedups of 4.51x and
4.20x (143x and 67x) respectively over a sequential base-
line. This is, on average, a factor 1.63 and 1

than a hand-coded, GPU-specific OpenCL implementation
developed by independent expert programmers.

Categories and Subject Descriptors D34 [Program-
ming Languages}: Processors—Compilers

General Terms  Experimentation, Languag

ment, Performance

Keywords  GPU, OpenCL, Machine-Learning Mapping
1. Introduction

Heterogencous systems consisting of a host multi-core and
GPU are highly atiractive as they give potentially massive

Pmision o ke il or b cores ol o art of s wor o perond o
classroom u e provided thal copies are not mide or disrbuted
\wpmhlurmm et iamags s koo b oot ol caton
e v.. o AIh:N)«( o repsbih. 0 pos o s o e

i perm

performance at litle cost. Realizing such potential, however,
is challenging due to the complexity of programming. User-
s typically have to identify potential sections of their code
suitable for SIMD style parallclization and rewrite them in

c language. To achieve good perfor-

programming model and to amortize the cost of commu-
nicating 10 a separate device with a distinet address spa
Such programming complexity is a barrir to greater adop-
tion of GPU based heterogeneous systems.

OpenCL is emerging as a standard for heterogeneous
multi-core/GPU systems. It allows the same code to be ex-
ceuted across a variety of processors including multi-co
CPUs and GPUs. While it provides functional portabi
it docs not necessarily provide performance portability.
practice programs have (0 be rewritten and tuned to deliver
performance when targeting new proce:
thus does litle to reduce the programming complex
er for users.

High level shared memory programming languag
as OpenMP are more attractive. They give a simple upgrade
path to parallelism for existing programs using pragmas. Al-
though OpenMP is mainly used for programming shared
memory multi-cores, it is a high-level language with little
hardware specific information and can be targeted to oth-
er platforms. What we would like is the ease of program-
‘ming of OpenMP with the GPU availability of OpenCL that
is then optimized for a particular platform and gracefully
adapts 1o GPU evolution. We deliver this by developing a
compiler based approach that automatically generates opti-
mized OpenCL from a subset of OpenMP. This allows the
user to confinue to use the same programming language,
with no modifications, while benefiting automatically from
heterogeneous performance.

The first effort in this direction is [17]. Here, the OpenM-

CUDA code from OpenMP program-

il promising, there are two signiicant shoricomings

tly, OpenMPC does not apply data

transformations. As shown in this paper data transformation
are crucial to achieve good performance on GPUs. Second-
1y, the programs are always exccuted on GPUs. While GPUs
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ABSTRACT

OpenCL has been designed 1o achieve funetional portabili

across multi-core devices from different vendors, However,
the Tack of a singlo crose arget optimiing compier severly
limits performance portability of OpenCL programs. Pro-
gramimers nood to manully tune applications for each spe-
ific device, preventing effective portability. We target &
compler trandformation :peum for data-parallel lang
thread-coarsening and show it can improve iormemcat
different, GPU devices. We then address the problem of se.
locting tho best, valu for the coarsentag factor parameter,
ie., deciding how many threads to merge togethe x-
perimentally show that, this is & hard problem to solv
configurations are difficult to find and naive coarsening in
fact leads to substantial slowdowns. We propose a solution
based on & machine-learning model that predicts the best,
conrsening factor using kernel-function static features. The
model automatically specializes to the different architectures
considered. We evaluate our approach on 17 benchmarks on
four devices: GPUs and two diffe

hieve speedups

Betwoen 1.11x and 1.

INTRODUCTION

Graphical Processing Units (GPUs) are widely
high performance computing. They provide cost-effec
parallelism for a wide range of applications. The success of
ume devices has lead to the introduction of a diverse range

tectures from many hardware manufacture
1as created the need for a common programming language to
harness the m.imble parallelism in a portable we
is an industry-standard language for GPUS that offers pro-
ram portal my cross aceelerators of different vendors: a

single piece of OpenCL code is guaranteed to be executable
on many diverse devices.

A uniform language specification, however, still require
programmers to manually optimize kernel code to impro
performance on each target architecture. This is a tedious
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s knowledge of hardware behavior, and
‘must be repeated each time the hardware is updated. This
‘problem is particularly acute for GPUs which undergo rapid
‘hardware evolutior
LU ool v ot ecpalopt
mizer capable of achieving performanc portability. Current
e e e e e Tor, 34) a1
wolve working on source-to-source transformations. Com-
Diler ntermediate representations [0 and 1SAs [5] that span
across devices of different vendors have still to reach full
support.
This paper studies the issue of performance portability fo-
cusing o the optimiaation ofthe theadcoarsening compiler
transformation. 'Threa

af work performed by  single thread, and reducing the total
‘number of threads instantiated. Sclecting the best coarsen-
ing factor, d.c., the number of threads to merge together, is
a trade-off between exploiting thread-level parallelism and
avoiding exccution of redundant, instructions. Making the
correct choice leads to significant speedups on all our plat-
forms. Our data show that picking the optimal coarsening
factor is difficult since most configurations lead to perfor-
‘mance downgrade and only carcful seletion of the coarser
ing factor gives improvements. Selecting the best parameter
requires knowledge of the particular hardware platform, i.e.,
different GPUs have different optimal factors
In this work we sclect the coarsening factor using an au-
‘tomated machine learning technique. We build our model
‘based on a cascade of neural networks that decide whether
it s beneficial to apply coarsening. The inputs to the model
are static code features extracted from the pmuel OpenCL
code. These features include, amon
ergence and instruction mi
s apphed to four GIU. architectures: Fermi and. Kepler
{from Nvidia and Cypress and Tahiti from AMD. While naive
i ities, our approach
‘es an average performance improvement of 1.16x, 1.11x,
1.33x, 1.30x respectively.
Tn summary the paper makes the following contributions:

© We provide a characterization of the optimization space
across four architectures.

© We develop a machine learning technique based on a
neural network to predict coarsening.

* We show significant performance improvements across
17 benchmarks
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CGO0’13 PACT’14



2x CPU-GPU  4x GPU
architectures architectures

7 Benchmark Suites 3 Benchmark Suites

CGO0’13 PACT’14



Heterogeneous Mapping Thread Goarsening

int

main(int ->

-V

argc ...

1. Use the same model design for hoth
2. Notweaking of parameters
3. Minimum change - 3 line diff




Neural Networks

Heterogeneous Mapping Thread Coarsening

code wgsize dsize code
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14% and 3% improvements over state-of-the-art

I State-of-the-art | DeepTune ?
vonchmars <17 bonohmar

2.38x

Heterogeneous Mapping Thread Coarsening



1ransier Learning




14% and 3% improvements over state-of-the-art

I} State-of-the-art | DeepTune

Speedup

Heterogeneous Mapping Thread Coarsening



14% and 11% improvements over state-of-the-art

I State-of-the-art | DeepTune [ w. Transfer Learning

Heterogeneous Mapping ‘\ Thread Coarseni




® Deep Fuzzing Compiler Testing
e



compilers bhreak

, 1 X 1
Compller crash Rewrite code around bug

Semantles chawge g Security risk



Regression suites

e Slow

e Late

e EXxpensive
e |ncomplete



fuzzing a compller

circa [McKeenan98g]



differential testing compilers

iz.la.out ]
$ ./a.out J
42

$ ./a.out
-14522312 x

Majori‘cg rules



differential testing compilers

int main(

int argc,
char**
argv) { ...

hard to
gewemte!

circa [McKeenan98g]



1.

2.

an ideal fuzzer
Cheap

Easy to implement and extend
(Languages and features grow quickly)

Interpretable Testcases

Necessary for triage
(i.e. 45 lines or less [Sun2016])

Plausible Output

Representative of handwritten code
(So that bugs gets fixed)



state-of-the-art: GLSmith

https://github.com/ChrisLidbury/CLSmith

#include "CLSmith.h" i
include "CLSm Random grammar enumeration.

struct SO {
int32_t g_4[4][10];

) Extensive static analyses support
itk (global ulong ") { subset of OpenCL features.

struclt SOc 1856;

str1u§5tGSO* p1 ; ggs &c_1856;

C c ] ]

func_1(p, 1855) Targets compiler middle ends.
barrier(CLK_LOCAL_MEM_FENCE

| CLK_GLOBAL_MEM_FENCE);
for (i = 0 |<4 i++)

Incredibly effective!

forg <10g
[l][l], p 1855->g_A4[i][j]",

"I'e';*u.':f‘gse*: iinear aiobalidg)= | 100s of bugs to date.

crc64 context A




state-of-the-art: GLSmith

https://github.com/ChrisLidbury/CLSmith
Cheap % nope!
Years to develop! 50k lines of G++.
Each PL feature engineered hy hand.

Interpretable Testcases ¥ nope!
Avg. 1200 lines (excluding headers).
Requires reduction: ~4 hours / test.

Plausible Output ¥ nope!
Unusual and restricted combinations of PL features.
87 dials control “shape” of output - hand tuned.



contributions

Automatic inference of fuzzers
from examples.

102x less code than state-of-art.

Similar hug finding power, simpler
test cases.



140821...

Tokeniser

: , Language
Scrape Lo >—F B corpus

Github

Synthesiser

Filter Driver







testing campaign

10 OpenCL compilers
3 GPUs, 5 GPUs, Xeon Phi, Emulator

Test with optimizations on / off
Treat as separate testheds

48 hours per testhed



Num results (log)

results overview

Errors in every compiler!




67 hug reports to date...

... crashes during parsing / compilation

void A() {void* a; uint4 b=0; b=(b>b)?a:a }

Affects: Intel OpenCL SDK 1.2.0.25

kernel void A(global int* a) {
int b = get_global_id(0);
alb] =(6*32) +4 *(32/32) + a;

}

Affects: Beignet 1.3

“Bad code” finds bugs in error handling



67 hug reports to date...

... crashes during type checking

kernel void A() {
__builtin_astype(d, uint4);

}

Affects: 6 / 10 compilers we tested

Unexpected outcome: Learning from
handwritten code leads to bugs found in
compiler bhuiltins!



67 hug reports to date...

... €rrors in optimizers

kernel void A(global double* a, global double* b,
global double* c, int d, int e) {

double f;
int g = get_global_id(0);
if(g<e-d-1)

clg] = (((e) / d) % 5) % (e + d);

}

Affects: Intel OpenCL SDK 1.2.0.25
CLSmith doesn’t allow

thread-dependent control flow.



Future Work



Deep Compilation

~a

A

Jjava

xform xform xform xform




Deep Reinforced Super Optimisation

Super optimisation

e Brute force search for optimal code

o Excellent results
° SIOW Use reinforcement learnin
J Need smart search J

DNN chooses actions
Actions are xform or change focus
Stop when predicts no improvement



Deep Data Flow

Learn analyses for heuristics not correctness

Zo LSTMs at program points

DNN struggle with data flow

LSTM cannot analyse even reachability on CFG

Transfer is LSTM processing instruction

Can we extend to abstract interpretation?

Meet merges LSTM states

< Results are LSTM outputs




Automatic Bug Iriage

Fuzzers make thousands of bug cases too quickly

Non buggy X%, o
programs SRR 7S
\‘//\\"
Record
Learn language models activation paths
to discriminate
\y(/l'\}\\?f{’\\‘v, DNN Difference
Buggy XSIBERIITS A
LXK @3 >E encodes
programs X0 - Cluster by

\\\I/}"‘\{\I/'*\ bug recognition

oA . ‘ activation paths




Deep Active Learning

Most points uninteresting

Good ones do just as well

Active learning

directly selects
Feature “Y"4 ‘e . e A ‘e -
R B P . 05 useful points
.3 ... ..:..0.0...flo: 0*.0.’ o . ...,f‘..: -
T T el Desired Drivable Matching
SR S O 54 language
. KLY AN o e features program
° o:..o.¢0 - .:’. mOdeI
MR O
., o ° . o o
.oq.. '. ° oq.. °
) ° o ’ 2 ° >
Feature “X” Feature “X”

.C++




®Deep learning = better compilers
® Deep learning = lower cost
® Fun stuff still to do



