

Machine Learning in Compilers

Institute for Computing Systems Architecture
University of Edinburgh, UK

Hugh Leather

Machine learning in compilers

Start with compiler data structures
AST, RTL, SSA, CFG, DDG, etc.

Machine learning in compilers

Human expert determines a mapping
to a feature vector

number of instructions

mean dependency depth

branch count

loop nest level

trip count

...

Machine learning in compilers

Now collect many examples of programs, determining
their feature values

...

Execute the programs with different compilation
strategies and find the best for each

Best Optimisation
Parameters

F
e

at
ur

es

Machine learning in compilers

Now give these examples to a machine learner

It learns a model

...
Supervised

Machine Learner

Examples

Best Heuristic
Value

F
e

at
ur

es

Model

Machine learning in compilers

This model can then be used to predict the best
compiler strategy from the features of a new program

Our heuristic is replaced

Predicted
Optimisation
Parameter

F
e

at
ur

es

Model

New Program

Machine learning in compilers

 A model is really just a way of fitting a curve to
data

Features

H
e

ur
is

tic

Machine learning in compilers

 A model is really just a way of fitting a curve to
data

Features

H
e

ur
is

tic

Machine learning in compilers

 Gives heuristic for unseen points

Features

B
es

t H
eu

ris
tic

 V
al

ue

Example: Partitioning Stream Programs

Z. Wang, M. O’Boyle, Partitioning Streaming Parallelism for Multi-cores: A Machine
Learning Based Approach, in PACT 2010

Partitioning Stream Programs

26/03/16 11

 Map the input program graph to threads
 Need to find a good one from many possible partitions

3 possible partitions on a 2-core machine

 Use a sequence of merging and splitting operations to
generate a partition

Generate A Partition

26/03/16 12

Compact graph representation.

merge
T2

T1

T3

T4

T3

T4

T1

T2

PARTITIONING SCHEDULING

Core-1 Core-2 Core-3 Core-4

…

merge

A Two Step Approach

1. Predict characteristics of the ideal partition

26/03/16 13

We do NOT run any of the generated partition for searching

Input Graph

...

Pipeline depth

Load balance

#Comms channels

Avg insns

Input
Features

A Two Step Approach

1. Predict characteristics of the ideal partition

26/03/16 14

We do NOT run any of the generated partition for searching

Input Graph Input
Features

...

Ideal Partition
Features

...

Pipeline depth

Load balance

#Comms channels

Avg insns

Model

Step 1

A Two Step Approach

1. Predict characteristics of the ideal partition

2. Search for a partition with those characteristics

26/03/16 15

We do NOT run any of the generated partition for searching

T1

T2

PartitionInput Graph Input
Features

...

Ideal Partition
Features

...
Model

Partition Search

Step 1 Step 2

 Nearest neighbour algorithm to predict the characteristics of the
ideal structure of the input program

Step 1: Prediction

26/03/16 16

Input program

Training program

instructions

Co
m

m
un

. –
 c

om
pu

ta
ti

on
 r

at
io

Characteristics of the best partition

[characteristics of the ideal partition]
Communication-computation ratio
…
#instructions

Step 2: Search

 Select a randomly generated partition whose structure is the most
close to the predicted one

26/03/16 17

The original graph

nearest generated
partition

[characteristic vector]

[characteristic of the
ideal partition]

We do not run the program!

Results

 ML significantly outperforms state-of-the-art
 Not far from Oracle (“Best”) performance

26/03/16 18

(Intel Xeon 4-Core)

Automatic Feature Generation
(Removing the human expert)

Choosing Features

 Problem
 ML relies on good features
 Subtle interaction between features and ML
 Infinite number of features to choose from

 Solution
 Automatically search for good features!

The Problem

 The expert must do a good job of projecting
down to features

amount of white space

average identifier length

age of programmer

name of program

...

...

The Problem

Feature 1

F
e

at
ur

e
2

0 1

0

1

 Machine learning works well when all examples
associated with one feature value have the
same type

The Problem

Feature 1

F
e

at
ur

e
2

0 1

0

1

 Machine learning doesn't work if the features
don't distinguish the examples

The Problem

 Better features might allow classification

Feature 1

F
e

at
ur

e
2

0 1

0

1

Feature 1

F
e

at
ur

e
2

0 1

0

1

Feature 3 = 0 Feature 3 = 1

The Problem

 There are much more subtle interactions
between features and ML algorithm

 Sometimes adding a feature makes things worse
 A feature might be copies of existing features

 There is an infinite number of possible features

An example – Loop unrolling

 Set up
 57 benchmarks from MiBench, MediaBench and

UTDSP
 Found best unroll factor for each loop in [0-16]
 Exhaustive evaluation to find oracle

An example – Loop unrolling

Unrolled 5 times

for(i = 0; i < n; i = i + k) {

 c[i+0] = a[i+0] * b[i+0];

 c[i+1] = a[i+1] * b[i+1];

 c[i+2] = a[i+2] * b[i+2];

 c[i+3] = a[i+3] * b[i+3];

 c[i+4] = a[i+4] * b[i+4];

 c[i+5] = a[i+5] * b[i+5];

}

Original Loop

for(i = 0; i < n; i = i ++) {

 c[i] = a[i] * b[i];

}

GCC vs Oracle

 GCC gets 3% of maximum
 On average mostly not worth unrolling

State of the art features

 Lots of good work with hand-built features
 Dubach, Cavazos, etc

 Stephenson was state of the art
 Tackled loop unrolling heuristic
 Spent some months designing features
 Multiple iterations to get right

GCC vs Stephenson

 Gets 59% of maximum!
 Machine learning does well

GCC vs Stephenson

 To scale up, must reduce feature development
time

GCC Stephenson

Heuristic Months

Features - Months

Training - Days

Learning - Seconds

Results 3% 59%

A feature space for a motivating
example

 Simple language the compiler accepts:
 Variables, integers, '+', '*', parentheses

 Examples:
 a = 10
 b = 20
 c = a * b + 12
 d = a * ((b + c * c) * (2 + 3))

A feature space for a motivating
example

 What type of features might we want?

a = ((b+c)*2 + d) * 9 + (b+2)*4

A feature space for a motivating
example

 What type of features might we want?

=

var +

**

+ const+ const

var const* var

+ const

var var

a = ((b+c)*2 + d) * 9 + (b+2)*4

A feature space for a motivating
example

 What type of features might we want?

=

var +

**

+ const+ const

var const* var

+ const

var var

a = ((b+c)*2 + d) * 9 + (b+2)*4

A feature space for a motivating
example

 What type of features might we want?

count−nodes−matching(
 is−times &&
 left−child−matches(
 is−plus
)&&
 right−child−matches(
 is−constant
)
)

=

var +

**

+ const+ const

var const* var

+ const

var varValue = 3

a = ((b+c)*2 + d) * 9 + (b+2)*4

A feature space for a motivating
example

 Define a simple feature language:

 GCC grammar is huge >160kb
 Genetic search for features that improve

machine learning prediction

<feature> ::= ”count−nodes−matching(” <matches> ”)”
<matches> ::= ”is−constant”
 | ”is−variable”
 | ”is−any−type”
 | (”is−plus” | ”is−times”)
 (”&& left−child−matches(” <matches> ”)”) ?
 (”&& right−child−matches(” <matches> ”)”) ?

Generate a feature from a grammar

 Now generate sentences from the grammar to
give features

Grammar
<A> ::= <A><A><A>

 | “b”

Sentence

 Start with the root non-terminal

A

 Choose randomly among productions and
replace

AAA

Generate a feature from a grammar

 Now generate sentences from the grammar to
give features

Grammar
<A> ::= <A><A><A>

 | “b”

Sentence

 Repeat for each non-terminal still in the
sentence

Generate a feature from a grammar

 Now generate sentences from the grammar to
give features

Grammar
<A> ::= <A><A><A>

 | “b”

Sentence
bAAAb

Generate a feature from a grammar

 Now generate sentences from the grammar to
give features

Grammar
<A> ::= <A><A><A>

 | “b”

Sentence
bbbbb

 Continue until there are no more non-terminals

Genetic search over features

 Search space is parse trees of features
 Genetic programming searches over feature

parse trees
 Features which help machine learning are

better

Results

 GCC 3% Stephenson 59% Ours 75%
 Automated features outperform human ones

Results

 Top Features Found
 get-attr(@num-iter)39%

Results

 Top Features Found
 get-attr(@num-iter)

 count(filter(//*, !(is-type(wide-int) || (is-type(float extend) &&[(is-
type(reg)]/count(filter(//*,is-type(int))))) || is-type(union type))))

39%

14%

Results

 Top Features Found
 get-attr(@num-iter)

 count(filter(//*, !(is-type(wide-int) || (is-type(float extend) &&[(is-
type(reg)]/count(filter(//*,is-type(int))))) || is-type(union type))))

 count(filter(/*, (is-type(basic-block) && (

!@loop-depth==2 ||

(0.0 > (

(count(filter(//*, is-type(var decl))) -

(count(filter(//*, (is-type(xor) && @mode==HI))) +

sum(

filter(/*, (is-type(call insn) && has-attr(@unchanging))),
count(filter(//*, is-type(real type)))))) /
count(filter(/*, is-type(code label)))))))))

39%

14%

8%

GCC vs Stephenson vs Ours

GCC Stephenson Ours

Heuristic Months - -

Features - Months -

Training - Days Days

Learning - Seconds Hours

Results 3% 59% 75%

Conclusion

 Analytic approaches no longer working
 Iterative compilation

 Empirical and good but too slow

 Machine learning here to stay
 Outperforming human heuristics
 Very fast development time

 Now used for many things
 Multi-core, GPGPU, Mobile, JIT, SQL, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Example: Partitioning Stream Programs
	Generate A Partition
	Slide 13
	A Two Step Approach
	Slide 15
	Step1: Prediction
	Step2: Search
	Results
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

