
Compiler Optimisation
13 – Adaptive and Profile Directed Compilation

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019

Introduction

Why we fail to optimise
Profile directed compilation
Iterative compilation
A bit of stats

Why we fail

Optimisation space is big. 1

Compiler options 10400+ per file alone!
Consider choices made per function, block, instruction
Some choices make more choices - e.g. inlining, unrolling

1You just won’t believe how vastly, hugely, mind-bogglingly big it is.
I mean, you may think it’s a long way down the road to the chemist’s, but
that’s just peanuts to space.

Why we fail

Modern architectures very complicated
Huge number of components
Non deterministic cache and O-O
Different one every few weeks

Why we fail

Runtime data not known
Can’t tell what code paths executed
Can’t tell cache miss frequencies
Can’t tell lots of stuff

Profile Directed Compilation
Profile Guided Optimisation

Run program with representative inputs
Collect interesting info
Recompile using interesting info

Costly
What if not representative inputs?

Profile Directed Compilation

Profile Directed Compilation

Typically record CFG edge frequencies

Already seen in insn scheduling
Also for spill costs in reg alloc
Also BB layout
Also inlining costs
Many others potentially

But, most compilers do very little

Profile Directed Compilation
Beyond edge frequencies

Typically gains small
Challenge of undecidability and processor behaviour not
addressed
What happens if data changes on the second run?
Really focuses on persistent control-flow behaviour
All other information e.g. runtime values, memory locations
accessed ignored
Can we get more out of knowing data and its impact on
program behaviour?

Iterative Compilation
Adaptive Compilation

Iterative Compilation
Adaptive Compilation

Avoids thinking about right optimisation
Search space can potentially include every choice
Architecture, memory behaviour, etc all handled
Performance gains substantial

Iterative Compilation

Iterative Compilation

Iterative Compilation

Iterative Compilation

Can be very costly - thousands of compile/run cycles
Search techniques can have significant impact on cost

Typically Random or Genetic Algorithm
But remember No Free Lunch Theorem2

Only iterate over hot code and use minimal inputs
Check compiler strategies actually change code

2To paraphrase: No one search technique is better than any other over all
problems

A Bit of Statistics
How to deal with noise

Most program measurements are noisy (e.g.
energy/performance)

Other programs
OS interaction
Small changes in initial state
Temperature
etc

Comparisons between measurements not straightforward

A Bit of Statistics

Random Variable
Variable whose value is subject to chance - e.g. runtime

Probability Distribution
Assigns a probability to each value that a random variable may take

Observation
A particular ‘read’ of a random variable

Sample
A collection of observations.

True vs Sample Mean
True mean is mean of the underlying distribution
Sample mean is mean of a particular sample
As |Sample| → ∞, sample mean → true mean

A Bit of Statistics

A Bit of Statistics

A Bit of Statistics

A Bit of Statistics

A Bit of Statistics

Confidence Interval
An interval estimate of a population parameter
CI usually has a confidence level, e.g. 95%
Converse is significance, i.e. 1 - level

Typically confidence intervals applied to mean
Interval does not say “True mean is 95% likely in here”
Interpret as “How much do I like this estimate?”
The more confident want to be about an estimate, the
wider the interval
Large sample size generally gives smaller intervals 3

3NB: Same is not true for standard deviation

A Bit of Statistics

How do we know if sample is big enough?
If not comparing distributions then use mean / CI4

If comparing two+ distributions then use statistical tests, e.g.
Student’s t-test, Anova5

4Strictly speaking, some care must be taken here as this type of sequential
sampling plan is not rigorously correct

5Also take care about this. May need Bonferroni adjustment or otherwise

Summary

Why we fail to optimise
Profile directed compilation
Iterative compilation
A bit of stats

PPar CDT Advert

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

