Compiler Optimisation

12 — Speculative Parallelisation

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019

Introduction

@ This lecture on:
“LPRD test: Speculative Run-time Parallelisation of loops
with privatization and reduction parallelism”
o Lawrence Rachwerger PLDI 1995
e Many follow up papers
e Expect you to read and understand this paper
@ Types of parallel loops

o Irregular parallelism
o Reduction parallelism

@ LPRD test and examples

Parallel Loop

Doall Implementation

Original

Doi=1, N p=get_num_proc() SUBROUTINE x_sub()
A(i)=B(i) fork(x_sub,p) p = get_num_proc()
C(i)=A(i) join() z = my_id0O

Enddo ilo = N/p * (z-1) +1

ihi = min(N, ilo+N/p)
Do i = ilo, ihi
A(i) = B(i)
C(i) = A(1)
Enddo
END

Generate p independent threads of work
@ Each has private local variables, z, ilo, ihi
@ Access shared arrays A, B, and C

Privatisation

Original
Doall i =1, N
private temp
A(i) = B(1) temp = A(i)
B(i) = temp A(i) = B(1)
Enddo B(i) = temp
Enddo

@ temp has loop carried anti and output dependence
@ Could scalar expand - but increase storage: O(1) to O(N)

e Or private to iteration - storage per processor O(p),p << N
o Variable, x, is privatisable for each iteration
o Every read of x is preceded by write of x

Reduction Parallelism

Origia
Do i=1, N pa(z) = 0
a=ad exp Doall i = ilo, ihi
Enddo pa(z) = pa(z) @ exp
Enddo
e Output, flow and anti call barrier_sync()
dependence if(z .EQ. 1)
o Called a reduction if Do x =1, p
e @ is associative a=a® palx)
e @ is commutative Enddo
e exp not contains a Endif)
@ lteration order does not matter!

Partial sums in parallel and merge
Can be sequential O(p) or tree parallel O(lg p)

Irregular Parallelism

Indirect array accesses

Doi=11to N
A(X(1)) = A(Y(1)) + B(i)
Enddo

@ Loop carried output dependent if any X(i1) = X(i2), i1 # iz
@ Loop carried flow/anti dependent if any X(i1) = Y(i2), ih # i
@ Values of X, Y determine dependence

e Unknown at compile-time

@ More than half scientific programs are irregular - sparse arrays

Runtime Parallelisation

Original
Doi=1, N
A(i+k) = A(i) + B(i)

Enddo

No dependence if |k| > N

@ Multiple versions of code

@ Analysis at runtime

Guarded parallelism

If(-N < K < N)
Doi=1, N
AGi+k) = A(i) + B(4i)
Enddo
Else
Doall i =1, N
A(i+k) = A(i) + B(1)
Enddo
Endif

@ Here check simple but can be more complex

Speculative Parallelisation

Origna
Doi=1, N cp = checkpoint ()
AGw(i)) = A(x(i)) + B(3) Doall i = 1, N // parallel
Enddo traces (w(i), r(i))
A(i)) = A(r(i)) + B(i)
@ Assume parallel Enddo

fail = analyse()

® Loop not parallel if any If (fail) // sequential

r(i) = w(i), i # i2 restore(cp)
@ Collect data access DOi=1, N
pattern and verify if A(w(1)) = A(r(i))+B(3)
dependence could occur? Enddo
Else
discard(cp)
Endif

!Compare vs check dependences not violated

Definitions

Independent Shared Variables

do i=1,n
£(i) = A(D)
B(i) = g(i)
end do

a shared variable is independent if it is:
e read-only (e.g., A)

@ accessed (written and read) in only one iteration (e.g., B)

Definitions

Privatisable Shared Variables
do i=1,n

A(Q:m) = £(i)

h(i) = A(1:m)
end do

a shared array A can be privatised if and only if

@ every read access to an element of A is preceded by a write
access to that same element of A within the same iteration of
the loop

@ it is dead after the loop

Lazy privatising Doall test

@ Speculatively privatise array elements and parallelise loop

@ Shadow arrays to record array accesses (per processor)

If one iteration writes memory and another reads but does not
write it — not Doall, speculation failed

Else if no memory written by different iterations — is Doall,
speculation succeeded

Else if any iteration a value is read before it is written — not
privatisable, speculation failed

Else speculation succeeded!

LRPD test Example

A(4), B(5),K(5), L(5)
Doi=1, 5
z = A(K(1))
If B(i) .EQ. O then
A(L(1)) = z + C(1)
Endif
Enddo

vy

Array contents

B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K(i1) = L(ir), B(ir) = 0, i1 # in

Is it safe?

LRPD test Example

A(4), B(5),K(5), L(5)
Doi=1, 5
z = A(K(1))
If B(i) .EQ. O then
A(L(1)) = z + C(1)
Endif
Enddo

vy

Array contents

B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) (2,2,4,4,2)

Unsafe if K(i1) = L(ir), B(ir) = 0, i1 # in

Is it safe?

Only consider i when B(ix) =0, gives i, € {2,4}

LRPD test Example

A(4), B(5),K(5), L(5)

Doi=1, 5
z = A(K(1))
If B(i) .EQ. O then
A(L(i)) = z + C(1)
Endif
Enddo

vy

Array contents

B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K(i1) = L(ir), B(ir) = 0, i1 # in

Is it safe?

Only consider i when B(ix) =0, gives i, € {2,4}
L(2) = 2,L(4) = 4, only matches in K when i; = i

LRPD test Example

A(4), B(5),K(5), L(5)
Doi=1, 5
z = A(K(1))
If B(i) .NE. O then
A(L(1)) = z + C(1)
Endif
Enddo

vy

Array contents

B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K(i1) = L(ia), B(ir) = 1,1 # >

Is it safe?

LRPD test Example

A(4), B(5),K(5), L(5)
Doi=1, 5
z = A(K(1))
If B(i) .NE. O then
A(L(1)) = z + C(1)
Endif

Enddo

vy

Array contents

B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) (2,2,4,4,2)

Unsafe if K(i1) = L(ia), B(ir) = 1,1 # >

Is it safe?
When 1 =2,/ =1 then

K(i1:2):2:L(i2:1) and B(i2:1):1

LRPD test Marking phase

@ Allocate shadow arrays A, A;, App One per processor.
O(n x p) overhead. Speculatively privatise A and execute in
parallel. Record accesses to data under test in shadows

@ markwrite(A(i)):

o Increment twa (write counter)
o If first time A(i) written in iteration, mark A,, (i), clear A, (i)
o (Only concerned with cross-iteration dependences)
@ markread(A(i)):
e If A(i) not already written in iteration,
mark A, (i) and mark An, (1)
o Note A,,(i) not cleared by MarkWrite.
np = ‘not privatisable if written elsewhere’

LRPD test Marking phase

A(4), B(5),K(5), L(5)
Doall i = 1,5

markread (A(K(i)))

z = AK(1))

If B(i) then
markwrite (A(L(i)))
ACL(1)) = z + C(1)

endif

Enddo

Note, some effort to optimise placement of marking.

LRPD test Results after marking

Program

A(4), B(5),K(5), L(5)
Doi=1,5
z = AK(1))
If B(i) .EQ. O then
AL(i)) = z + C(4)
Endif
Enddo

| A

Array contents

B(1:5) = (1,0,1,0,1)
K(1:5) (1,2,3,4,1)
L(1:5) (2,2,4,4,2)

1[2[3]4
A,14) [0[1]0]1
A(14) [1]0[1]0
Ap(l4) [T][0[1]0
A, A, [0]0[0]0
AyAAp |0[0[0]0

tmp = ZAW =2
Total number of distinct
elements written

LRPD test Analysis phase

o if A, ANA, then NOT Doall read and write in diff iterations to
same element

@ else if tw = tm then was a Doall unique iterator writes
o else if Ay, A App then NOT Doall
@ otherwise loop privatisation valid, Doall

Aw A A, = 0: Falil

tw # tm : Fail

Aw N\ Anp =0 : Fall

Overall privatise - remove output dependence

LRPD test Marking phase

Handling reductions

Extended to handle reductions
Allocate shadow arrays per processor. O(n x p) overhead.

Record accesses to data under test in shadows
Mark Redux ()

e Mark A(i) if element is NOT valid reference in reduction
statement - not a reduction variable

(]

Read paper for details and example

LRPD test Improvements

@ One dependence can invalidate speculative parallelisation

e Partial parallelism not exploited

e Transform so that up till first dependence parallel

e Reapply on the remaining iterators.
@ Large overheads

e Adaptive data structures to reduce shadow array overhead
@ Large amount of work in speculative parallelisation

o Hardware support for Thread Level Speculation (TLS),

transactional memory
o Compiler combined with static analysis

Summary

@ Summary of parallelisation idioms
@ lIrregular accesses

@ Shadow arrays

@ Marking and analysis for Doall and reductions
°

Last lecture on parallelism. Next on adaptive compilation

PPar CDT Advert

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

* 4-year programme: Research topics in software,
MSc by Research + PhD hardware, theory and

application of:

» Parallelism

» Concurrency

» Distribution

« Research-focused:
Work on your thesis topic
from the start

Full funding available
« Collaboration between:
» University of Edinburgh’s
School of Informatics Industrial engagement
* Ranked top in the UK by programme includes
2014 REF internships at leading
» Edinburgh Parallel Computing companies
Centre
* UK's largest supercomputing
centre

A i
informatics

Research Council

