
Compiler Optimisation
12 – Speculative Parallelisation

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019

Introduction

This lecture on:
“LPRD test: Speculative Run-time Parallelisation of loops
with privatization and reduction parallelism”

Lawrence Rachwerger PLDI 1995
Many follow up papers
Expect you to read and understand this paper

Types of parallel loops
Irregular parallelism
Reduction parallelism

LPRD test and examples

Parallel Loop
Doall Implementation

Original
Do i = 1, N

A(i)=B(i)
C(i)=A(i)

Enddo

Driver
p=get_num_proc()
fork(x_sub,p)
join()

Per thread
SUBROUTINE x_sub()

p = get_num_proc()
z = my_id()
ilo = N/p * (z-1) +1
ihi = min(N, ilo+N/p)
Do i = ilo, ihi

A(i) = B(i)
C(i) = A(i)

Enddo
END

Generate p independent threads of work
Each has private local variables, z, ilo, ihi

Access shared arrays A, B, and C

Privatisation

Original
Do i = 1, N

temp = A(i)
A(i) = B(i)
B(i) = temp

Enddo

temp privatised
Doall i = 1, N

private temp
temp = A(i)
A(i) = B(i)
B(i) = temp

Enddo

temp has loop carried anti and output dependence
Could scalar expand - but increase storage: O(1) to O(N)

Or private to iteration - storage per processor O(p), p << N
Variable, x , is privatisable for each iteration

Every read of x is preceded by write of x

Reduction Parallelism

Original
Do i = 1, N

a = a ⊕ exp
Enddo

Output, flow and anti
dependence
Called a reduction if

⊕ is associative
⊕ is commutative
exp not contains a

Parallelised
pa(z) = 0
Doall i = ilo, ihi

pa(z) = pa(z) ⊕ exp
Enddo
call barrier_sync()
if(z .EQ. 1)

Do x = 1, p
a = a ⊕ pa(x)

Enddo
Endif

Iteration order does not matter!
Partial sums in parallel and merge
Can be sequential O(p) or tree parallel O(lg p)

Irregular Parallelism

Indirect array accesses
Do i = 1 to N

A(X(i)) = A(Y(i)) + B(i)
Enddo

Loop carried output dependent if any X (i1) = X (i2), i1 6= i2
Loop carried flow/anti dependent if any X (i1) = Y (i2), i1 6= i2
Values of X , Y determine dependence

Unknown at compile-time
More than half scientific programs are irregular - sparse arrays

Runtime Parallelisation

Original
Do i = 1, N

A(i+k) = A(i) + B(i)
Enddo

No dependence if |k| > N

Guarded parallelism
If(-N < K < N)

Do i = 1, N
A(i+k) = A(i) + B(i)

Enddo
Else

Doall i = 1, N
A(i+k) = A(i) + B(i)

Enddo
Endif

Multiple versions of code
Analysis at runtime
Here check simple but can be more complex

Speculative Parallelisation

Original
Do i = 1, N

A(w(i)) = A(r(i)) + B(i)
Enddo

Assume parallel
Loop not parallel if any
r(i1) = w(i2), i1 6= i2
Collect data access
pattern and verify if
dependence could occur1

Speculative
cp = checkpoint()
Doall i = 1, N // parallel

traceA(w(i), r(i))
A(w(i)) = A(r(i)) + B(i)

Enddo
fail = analyse()
If (fail) // sequential

restore(cp)
DO i = 1, N

A(w(i)) = A(r(i))+B(i)
Enddo

Else
discard(cp)

Endif

1Compare vs check dependences not violated

Definitions

Independent Shared Variables
do i=1,n

f(i) = A(i)
B(i) = g(i)

end do

a shared variable is independent if it is:
read-only (e.g., A)
accessed (written and read) in only one iteration (e.g., B)

Definitions

Privatisable Shared Variables
do i=1,n

A(l:m) = f(i)
h(i) = A(l:m)

end do

a shared array A can be privatised if and only if
every read access to an element of A is preceded by a write
access to that same element of A within the same iteration of
the loop
it is dead after the loop

Lazy privatising Doall test

Speculatively privatise array elements and parallelise loop
Shadow arrays to record array accesses (per processor)

If one iteration writes memory and another reads but does not
write it – not Doall, speculation failed
Else if no memory written by different iterations – is Doall,
speculation succeeded
Else if any iteration a value is read before it is written – not
privatisable, speculation failed
Else speculation succeeded!

LRPD test Example

Loop
A(4), B(5),K(5), L(5)
Do i = 1, 5

z = A(K(i))
If B(i) .EQ. 0 then

A(L(i)) = z + C(i)
Endif

Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K (i1) = L(i2),B(i2) = 0, i1 6= i2
Is it safe?

LRPD test Example

Loop
A(4), B(5),K(5), L(5)
Do i = 1, 5

z = A(K(i))
If B(i) .EQ. 0 then

A(L(i)) = z + C(i)
Endif

Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K (i1) = L(i2),B(i2) = 0, i1 6= i2
Is it safe?
Only consider i2 when B(i2) = 0, gives i2 ∈ {2, 4}

LRPD test Example

Loop
A(4), B(5),K(5), L(5)
Do i = 1, 5

z = A(K(i))
If B(i) .EQ. 0 then

A(L(i)) = z + C(i)
Endif

Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K (i1) = L(i2),B(i2) = 0, i1 6= i2
Is it safe?
Only consider i2 when B(i2) = 0, gives i2 ∈ {2, 4}
L(2) = 2, L(4) = 4, only matches in K when i1 = i2

LRPD test Example

Loop
A(4), B(5),K(5), L(5)
Do i = 1, 5

z = A(K(i))
If B(i) .NE. 0 then

A(L(i)) = z + C(i)
Endif

Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K (i1) = L(i2),B(i2) = 1, i1 6= i2
Is it safe?

LRPD test Example

Loop
A(4), B(5),K(5), L(5)
Do i = 1, 5

z = A(K(i))
If B(i) .NE. 0 then

A(L(i)) = z + C(i)
Endif

Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

Unsafe if K (i1) = L(i2),B(i2) = 1, i1 6= i2
Is it safe?
When i1 = 2, i2 = 1 then
K (i1 = 2) = 2 = L(i2 = 1) and B(i2 = 1) = 1

LRPD test Marking phase

Allocate shadow arrays Aw ,Ar ,Anp one per processor.
O(n × p) overhead. Speculatively privatise A and execute in
parallel. Record accesses to data under test in shadows
markwrite(A(i)):

Increment twA (write counter)
If first time A(i) written in iteration, mark Aw (i), clear Ar (i)
(Only concerned with cross-iteration dependences)

markread(A(i)):
If A(i) not already written in iteration,
mark Ar (i) and mark Anp(i)
Note Anp(i) not cleared by MarkWrite.
np = ‘not privatisable if written elsewhere’

LRPD test Marking phase

A(4), B(5),K(5), L(5)
Doall i = 1,5

markread(A(K(i)))
z = A(K(i))
If B(i) then

markwrite(A(L(i)))
A(L(i)) = z + C(i)

endif
Enddo

Note, some effort to optimise placement of marking.

LRPD test Results after marking

Program
A(4), B(5),K(5), L(5)
Do i = 1, 5

z = A(K(i))
If B(i) .EQ. 0 then

A(L(i)) = z + C(i)
Endif

Enddo

Array contents
B(1:5) = (1,0,1,0,1)
K(1:5) = (1,2,3,4,1)
L(1:5) = (2,2,4,4,2)

LRPD shadows
1 2 3 4

Aw (1:4) 0 1 0 1
Ar (1:4) 1 0 1 0
Anp(1:4) 1 0 1 0
Aw ∧ Ar 0 0 0 0
Aw ∧ Anp 0 0 0 0

tmA =
∑

Aw = 2
Total number of distinct
elements written

LRPD test Analysis phase

if Aw ∧Ar then NOT Doall read and write in diff iterations to
same element
else if tw = tm then was a Doall unique iterator writes
else if Aw ∧ Anp then NOT Doall
otherwise loop privatisation valid, Doall

Aw ∧ Ar = 0: Fail
tw 6= tm : Fail
Aw ∧ Anp = 0 : Fail
Overall privatise - remove output dependence

LRPD test Marking phase
Handling reductions

Extended to handle reductions
Allocate shadow arrays per processor. O(n × p) overhead.
Record accesses to data under test in shadows
Mark Redux ()

Mark A(i) if element is NOT valid reference in reduction
statement - not a reduction variable

Read paper for details and example

LRPD test Improvements

One dependence can invalidate speculative parallelisation
Partial parallelism not exploited
Transform so that up till first dependence parallel
Reapply on the remaining iterators.

Large overheads
Adaptive data structures to reduce shadow array overhead

Large amount of work in speculative parallelisation
Hardware support for Thread Level Speculation (TLS),
transactional memory
Compiler combined with static analysis

Summary

Summary of parallelisation idioms
Irregular accesses
Shadow arrays
Marking and analysis for Doall and reductions
Last lecture on parallelism. Next on adaptive compilation

PPar CDT Advert

The biggest revolution
in the technological
landscape for fifty years

Now accepting applications!
Find out more and apply at:

pervasiveparallelism.inf.ed.ac.uk

• • 4-year programme: 4-year programme:
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s
School of Informatics
 ✴ Ranked top in the UK by
2014 REF

 ▶ Edinburgh Parallel Computing
Centre
 ✴ UK’s largest supercomputing
centre

• Full funding available

• Industrial engagement
programme includes
internships at leading
companies

• Research-focused:
 Work on your thesis topic
 from the start

• Research topics in software,
hardware, theory and

 application of:
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution

