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Introduction

This lecture:
e Parallelisation for fork/join
@ Mapping parallelism to shared memory multi-processors
@ Loop distribution and fusion
e Data Partitioning and SPMD parallelism
°

Communication, synchronisation and load imbalance.



Introduction

Approaches to parallelisation

@ Two approaches to parallelisation
e Traditional shared memory
Single address space
Based on finding parallel loop iterations
e Distributed memory compilation
Physically distributed memory uses a mixture of both
Focus on mapping data, computation

@ Can show equivalence

Implement shared memory on distributed
Implement distributed memory on shared



Introduction

Approaches to parallelisation

Shared memory - single address space




Introduction

Approaches to parallelisation

Shared memory - probably private caches, but looks like single
address space
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Introduction

Approaches to parallelisation

Distributed memory - each machine has own address space
Use message passing




Loop Parallelisation

@ Assume a single address space machine. Each processor sees
the same set of addresses. Do not need to know physical
location of memory reference.

@ Control-orientated approach. Concerned with finding
independent iterations of a loop. Then map or schedule these
to the processor.

@ Aim: find maximum amount of parallelism and minimise
synchronisation.

@ Secondary aim: improve load imbalance. Inter-processor
communication not considered.

@ Main memory just part of hierarchy - so use uni-processor
approaches.



Loop Parallelisation
Fork/join

@ Fork (create) threads at beginning of loop

. . Fork
@ Thread executes one or more iterations.
Depend on later scheduling policy Thread -
@ Join (synchronisation/barrier) at end of loop
@ Synchronisation expensive J
oin

e Favour outer loop parallelism
o Loop interchange



Loop Parallelisation
DOALL Implementation

Original

Doi=1, N p=get_num_proc() SUBROUTINE x_sub()
A(i)=B(i) fork(x_sub,p) p = get_num_proc()
C(i)=A(i) join() z = my_id0O

Enddo ilo = N/p * (z-1) +1

ihi = min(N, ilo+N/p)
Do i = ilo, ihi
A(i) = B(i)
C(i) = A(1)
Enddo
END

Generate p independent threads of work
@ Each has private local variables, z, ilo, ihi
@ Access shared arrays A, B and C



Loop Parallelisation

Using loop interchange

0(n) synchronisaion poins

Doi=1, N Doi=1, N
Do j =1, M Parallel Do j =1, M
a(i+1,j) = a(i,j)+c a(i+1,j) = a(i,j)+c
Enddo Enddo
Enddo ) Enddo )
Do j =1, M Parallel Do j =1, M
Doi=1, N Doi=1, N
a(i+1,j) = a(di,j)+c a(i+1,j) = a(d,j)+c
Enddo Enddo
Enddo ) Enddo

Interchange has reduced synchronisation overhead from O(N) to 1.



Parallelisation approach

@ Loop distribution eliminates carried dependences and creates
opportunity for outer-loop parallelism.

@ However increases number of synchronisations needed after
each distributed loop.

@ Maximal distribution often finds components too small for
efficient parallelisation

@ Solution: fuse together parallelisable loops.



Loop Fusion

Fusion illegal if changes the dependence direction

Two loops - same bounds

Doi=1, N

a(i) = b(i) + ¢
Enddo
Doi=1, N

d(i) = a(i) + e
Enddo

Profitability: Parallel and sequéntialloops should not generally be
merged



Loop Fusion

Fusion illegal if changes the dependence direction

Two loops - same bounds

Doi=1, N Doi=1, N

a(i) = b(i) + ¢ a(i) = b(i) + ¢
Enddo d(i) = a(i+l) + e
Doi=1, N Enddo

d(i) = a(i+l) + e
Enddo

Take care that fusing does not prevent parallelisation



Data Parallelism

@ Alternative approach where we focus on mapping data rather
than control flow to the machine

e Data is partitioned/distributed across the processors of the
machine

@ The computation is then mapped to follow the data - typically
such that work writes to local data. Local write/owner
computes rule.

@ All of this is based on the SPMD computational model. Each
processor runs one thread executing the same program,
operating on the different data

@ This means that loop bounds change from processor to
processor.



Data Parallelism

Mapping

Placement of work and data on processors. Assume
parallelism found in a previous stage

Typically program parallelism O(n) is much greater than
machine parallelism O(p), n >> p

We have many options as to how to map a parallel program

Key issue: What is the best mapping that achieves O(p)
parallelism but minimises cost

Costs include communication, load imbalance and
synchronisation



Data Placement

Simple Fortran example

Iteration space

j loop
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9

i loop 1

23 4 5 6 7 8 9 10

Dimension Integer a(4,8) 45 6 7 8 9 10 11 12
Doi=1, 4
Do j =1, 8 Data space
’ index 1
a(i,jd) =1+ j _ 1 2 3 4 5 6 7 8
Enddo ndex2, 1 374 5 67 8 9
Enddo 3 4 5 6 7 8 9 10

Note that here data and iteration spaces line up. Generally not the
case



Data Placement

Simple Fortran example

Partitioning by columns of a and hence iterator j : Local writes

Processor 1

Dimension Integer Iteration space

j loop
a(4,1..2) _ 1 2 3 4 5 6 7 8
Doi=1, 4 Moop [ 54 5|6 7]8 o
Do j=1,2 2|3 4|5 6|7 8 9 10
a(i,j) =1+ j 34 s|e6 7|8 9|10 11
Enddo 4|5 6|7 8|9 10|11 12
Enddo
Data space
index 1
]I;_rocessqr3lt . 1.2 3 4.5 6 7 8
:EZGHSI((;I)l nteger ndex2. 05 7 3]a 5|6 7]8 o
a 5..
5 ’ L4 2|3 a5 6|7 8|9 10
oi=
o 34 5|6 7|8 910 11
Do j =5, 6
.. . . 45 6|7 8|9 10 11 12
a(i,j) =1+ j
EIl d dO Processor Processor Processor Processor

Enddo



Data Placement

Simple Fortran example

Partitioning by rows of a and hence iterator i: Local writes

Processor 1

Dimension Integer Iteration space

j loop
a(1..1,1..8) _ 1 2 3 4 5 6 7 8
Doi=1,1 Moop ([ 374 5 6 7 8 9
Do j=1, 8 2[3 4 5 6 7 8 9 10
a(i,j) =1+ j 34 5 6 7 8 9 10 11
Enddo 4|5 6 7 8 9 ‘10 11‘12
Enddo
Data space
index 1
grocessqr 3 Int . 1 2 3 4 5 6 7 8
imension Integer index 2, [ RSN NN=N
a(3..3,1..8)
: 23 4 5 6 7 8 9 10
Do i =3, 3
X 34 5 6 7 8 9 10 11
Do j=1, 8
. . . 45 6 7 8 9 10 11 12
a(i,j) =1+ j
Enddo

Enddo




Linear program representation

Iteration space defined by loop bound constraints
Constraints are affine (37 < &)

Matrix standard form (A7 < &)

Each constraint defines half space

Iteration space is intersection of half spaces (polytope)
Iterations at integer lattice points within iteration space
o Typically unit lattices

Array access patterns as affine functions over iteration vectors
(f(i) = Bi + d)



Linear program representation

Example
Iteration constraints
Do i =1, 16 1<i
Do j =1, 16 1<
Do k =i, 16 i<k
c(i,j) = c(i,]j) i<16
+a(i,k)*b(j,k) j<16
k<16



Linear program representation

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(i, ]

+a(i,k)*b(j,k)

Make into standard form

1-i<0
1-j<0
i—k<0
i< 16
Jj <16
k <16



Linear program representation

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(i, ]

+a(i,k)*b(j,k)

Make into standard form

—i< -1
—j<-1
i—k<0
i< 16
Jj <16
k <16



Linear program representation

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(d,7)

+a(i,k)*b(j,k)

Make into standard form

—1.i40j+0k< -1

0.i+—1j+0k<-1

1Li+0j+-1.k<0
1i+0j+0k<16
0.i+1j4+0k<16
0.i+0j+1.k<16



Linear program representation

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(d,7)
+a(i,k)*b(j,k)
-
k
\

O O HFOR

=N S Nellel Nl

Make into standard form

= O OoOlr OO



Linear program representation

Example
Make into standard form

Doi=1, 16 -1 0 0 -1
Do j =1, 16 A N B
Dok =i, 16 T o0 o ||/ || 16
c(i,j) = c(d,7j) 0 1 o0 k 16
+a(i,k)*b(j,k) 0 0 1 16

Access matrices U. U, Up,

100 ! 100 ! 010 ’

010 R O S 1010 01 J

c| k a| k b | k



Linear program representation

Transformations

e Many transformations! are affine functions over linear program
@ Scanning then regenerates code

@ Partitioning loop for different processors by adding partition
constraints

1Skew, reverse, interchange, etc



Linear program representation

Partitioning example

Split four processors equally along i -1 0 0 -1
Processor 2 0o -1 0 -1
1 0 -1 . 0

Do i = 5,8 I 0 o |16
Do j = 1,16 0 -1 0 =] e
Do k = i,16 0 0 -1 16
c(i,j) = c(i,)) -1 0 0 =5
+a(i,k)*b(j,k) 1 0 0 8

Determine local array bounds \,, v, for each processor 1 < z < p.
AM=LX=5X3=9 ) =13

v1 =4,vp =8,u3 =12, 14 = 16

Determine local write constraint A\, < U, < v,,5 < i < 8 and add
to polytope

Works for arbitrary loop structures and accesses



Load balancing

@ Load describes amount of work each processor must do

@ For simple loop bodies is number of iterations assigned to
each processor

@ All processors wait for slowest at join point

@ Want to minimise idle time at join



Load balancing

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(i,j) + a(i,k) * b(j,k)

Assuming c, a, b are to be partitioned in a similar manner
How should we partition to minimise load imbalance?

@ Row (along i): processor load 928, 672, 416, 160 iterations
e Column (along j): processor load 544, 544, 544, 544 iterations

Why this variation?



Load balance

Example

Partition by row (along i)




Load balance

Example

Partition by column (along )

AN

Partition by “invariant” iterator j.



Load balance
Polytope based

@ Generally straightforward to ‘read’ from polytope

@ lteration variable with zeros elsewhere in rows and columns is

‘invariant’

@ Partitioning on ‘invariant’ yields balance

i ‘conflicts” with k

0
-1
0

O O k= O =

o = O

= O Ok O O

J ‘invariant’

[ —1
0

O O =k

O R OO = O

= O Ol O O




Reducing Communication

We wish to partition work and data to reduce amount of
communication or remote accesses

Dimension a(n,n) b(n,n)
Doi=1, n
Do j=1,n
Dok =1, n
a(i,j) = b(i,k)
Enddo
Enddo
Enddo

How should we partition to reduce communication?



Reducing communication

Each processor has rows of a and b allocated to it
Look at access pattern of second processor

Dimension a(n,n) b(n,n) Array a Array b
Doi=1, n
Do j=1,n
Dok =1, n
a(i,j) = b(i,k)
Fnddo P, P, P, P, P, P, P, P,
Enddo
Enddo

The columns of a scheduled to P2 access all of b n? — ”g

aCcess

remote



Reducing communication

Each processor has rows of a and b allocated to it
Look at access pattern of second processor

Dimension a(n,n) b(n,n) Array a Array b

Doi=1,n P,
boJ =1, m HH
2

Dok =1, n P,
a(i,j) = b(i,k) 5
Enddo
Enddo

Enddo )
The rows of a scheduled to P2 access corresponding rows of b.

0 remote accesses.



Alignment

|

@ The first index of a and b have the same subscript a(i,j), b(i,k)
@ They are said to be aligned on this index

@ Partitioning on an aligned index makes all accesses local to
that array reference

1 00 1 00
0107|001
a b

Can transform array layout to make arrays more aligned for
partitioning.

Find A such that Al is maximally aligned with U/,

Global alignment problem



Synchronisation

@ Alignment information can also be used to eliminate
synchronisation

o Early work in data parallelisation did not focus on
synchronisation

@ The placement of message passing synchronous
communication between source and sink would (over!) satisfy
the synchronisation requirement

@ When using data parallel on new single address space
machines, have to reconsider this.

o Basic idea, place a barrier synchronisation where there is a
cross-processor data dependence.



Synchronisation

Do i=1, 16
a(i) = b(i)
Enddo
Doi=1, 16
c(i) = a(i)
Enddo

Do i=1, 16
a(17-i) = b(i)

Enddo

Doi=1, 16
c(i) = a(i)

Enddo

@ Barrier placed between each loop. But are they necessary?

Data that is written always local. (local write rule)

o
@ Data that is aligned on partitioned index is local.
o

No need for barriers here



Summary

VERY brief overview of auto- parallelism

Parallelisation for fork/join

Mapping parallelism to shared memory multi-processors
Data Partitioning and SPMD parallelism

Multi-core processor are common place

Sure to be an active area of research for years to come
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