
Compiler Optimisation
11 – Parallelisation

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019



Introduction

This lecture:
Parallelisation for fork/join
Mapping parallelism to shared memory multi-processors
Loop distribution and fusion
Data Partitioning and SPMD parallelism
Communication, synchronisation and load imbalance.



Introduction
Approaches to parallelisation

Two approaches to parallelisation
Traditional shared memory
Single address space
Based on finding parallel loop iterations
Distributed memory compilation
Physically distributed memory uses a mixture of both
Focus on mapping data, computation

Can show equivalence
Implement shared memory on distributed
Implement distributed memory on shared



Introduction
Approaches to parallelisation

Shared memory - single address space



Introduction
Approaches to parallelisation

Shared memory - probably private caches, but looks like single
address space



Introduction
Approaches to parallelisation

Distributed memory - each machine has own address space
Use message passing



Loop Parallelisation

Assume a single address space machine. Each processor sees
the same set of addresses. Do not need to know physical
location of memory reference.
Control-orientated approach. Concerned with finding
independent iterations of a loop. Then map or schedule these
to the processor.
Aim: find maximum amount of parallelism and minimise
synchronisation.
Secondary aim: improve load imbalance. Inter-processor
communication not considered.
Main memory just part of hierarchy - so use uni-processor
approaches.



Loop Parallelisation
Fork/join

Fork (create) threads at beginning of loop
Thread executes one or more iterations.
Depend on later scheduling policy
Join (synchronisation/barrier) at end of loop
Synchronisation expensive

Favour outer loop parallelism
Loop interchange



Loop Parallelisation
DOALL Implementation

Original
Do i = 1, N

A(i)=B(i)
C(i)=A(i)

Enddo

Driver
p=get_num_proc()
fork(x_sub,p)
join()

Per thread
SUBROUTINE x_sub()

p = get_num_proc()
z = my_id()
ilo = N/p * (z-1) +1
ihi = min(N, ilo+N/p)
Do i = ilo, ihi

A(i) = B(i)
C(i) = A(i)

Enddo
END

Generate p independent threads of work
Each has private local variables, z, ilo, ihi

Access shared arrays A, B and C



Loop Parallelisation
Using loop interchange

Original
Do i = 1, N

Do j = 1, M
a(i+1,j) = a(i,j)+c

Enddo
Enddo

Interchanged
Do j = 1, M

Do i = 1, N
a(i+1,j) = a(i,j)+c

Enddo
Enddo

O(n) synchronisation points
Do i = 1, N

Parallel Do j = 1, M
a(i+1,j) = a(i,j)+c

Enddo
Enddo

1 synchronisation point
Parallel Do j = 1, M

Do i = 1, N
a(i+1,j) = a(i,j)+c

Enddo
Enddo

Interchange has reduced synchronisation overhead from O(N) to 1.



Parallelisation approach

Loop distribution eliminates carried dependences and creates
opportunity for outer-loop parallelism.
However increases number of synchronisations needed after
each distributed loop.
Maximal distribution often finds components too small for
efficient parallelisation
Solution: fuse together parallelisable loops.



Loop Fusion

Fusion illegal if changes the dependence direction

Two loops - same bounds
Do i = 1, N

a(i) = b(i) + c
Enddo
Do i = 1, N

d(i) = a(i) + e
Enddo

Fused
Do i = 1, N

a(i) = b(i) + c
d(i) = a(i) + e

Enddo

Profitability: Parallel and sequential loops should not generally be
merged



Loop Fusion

Fusion illegal if changes the dependence direction

Two loops - same bounds
Do i = 1, N

a(i) = b(i) + c
Enddo
Do i = 1, N

d(i) = a(i+1) + e
Enddo

Fused
Do i = 1, N

a(i) = b(i) + c
d(i) = a(i+1) + e

Enddo

Take care that fusing does not prevent parallelisation



Data Parallelism

Alternative approach where we focus on mapping data rather
than control flow to the machine
Data is partitioned/distributed across the processors of the
machine
The computation is then mapped to follow the data - typically
such that work writes to local data. Local write/owner
computes rule.
All of this is based on the SPMD computational model. Each
processor runs one thread executing the same program,
operating on the different data
This means that loop bounds change from processor to
processor.



Data Parallelism
Mapping

Placement of work and data on processors. Assume
parallelism found in a previous stage
Typically program parallelism O(n) is much greater than
machine parallelism O(p), n >> p
We have many options as to how to map a parallel program
Key issue: What is the best mapping that achieves O(p)
parallelism but minimises cost
Costs include communication, load imbalance and
synchronisation



Data Placement
Simple Fortran example

Dimension Integer a(4,8)
Do i = 1, 4

Do j = 1, 8
a(i,j) = i + j

Enddo
Enddo

Note that here data and iteration spaces line up. Generally not the
case



Data Placement
Simple Fortran example

Partitioning by columns of a and hence iterator j : Local writes
Processor 1
Dimension Integer
a(4,1..2)
Do i = 1, 4

Do j = 1 ,2
a(i,j) = i + j

Enddo
Enddo
...
Processor 3
Dimension Integer
a(4,5..6)
Do i = 1, 4

Do j = 5, 6
a(i,j) = i + j

Enddo
Enddo



Data Placement
Simple Fortran example

Partitioning by rows of a and hence iterator i: Local writes
Processor 1
Dimension Integer
a(1..1,1..8)
Do i = 1, 1

Do j = 1, 8
a(i,j) = i + j

Enddo
Enddo
...
Processor 3
Dimension Integer
a(3..3,1..8)
Do i = 3, 3

Do j = 1, 8
a(i,j) = i + j

Enddo
Enddo



Linear program representation

Iteration space defined by loop bound constraints
Constraints are affine (~a~i ≤ ~c)
Matrix standard form (A~i ≤ ~c)
Each constraint defines half space
Iteration space is intersection of half spaces (polytope)
Iterations at integer lattice points within iteration space

Typically unit lattices
Array access patterns as affine functions over iteration vectors
(f (~i) = B~i + d)



Linear program representation
Example

Do i = 1, 16
Do j = 1, 16

Do k = i, 16
c(i,j) = c(i,j)

+a(i,k)*b(j,k)

Iteration constraints

1 ≤ i
1 ≤ j
i ≤ k
i ≤ 16
j ≤ 16
k ≤ 16



Linear program representation
Example

Do i = 1, 16
Do j = 1, 16

Do k = i, 16
c(i,j) = c(i,j)

+a(i,k)*b(j,k)

Make into standard form

1 − i ≤ 0
1 − j ≤ 0
i − k ≤ 0

i ≤ 16
j ≤ 16
k ≤ 16



Linear program representation
Example

Do i = 1, 16
Do j = 1, 16

Do k = i, 16
c(i,j) = c(i,j)

+a(i,k)*b(j,k)

Make into standard form

−i ≤ −1
−j ≤ −1

i − k ≤ 0
i ≤ 16
j ≤ 16
k ≤ 16



Linear program representation
Example

Do i = 1, 16
Do j = 1, 16

Do k = i, 16
c(i,j) = c(i,j)

+a(i,k)*b(j,k)

Make into standard form

−1.i + 0.j + 0.k ≤ −1
0.i +−1.j + 0.k ≤ −1
1.i + 0.j +−1.k ≤ 0

1.i + 0.j + 0.k ≤ 16
0.i + 1.j + 0.k ≤ 16
0.i + 0.j + 1.k ≤ 16



Linear program representation
Example

Do i = 1, 16
Do j = 1, 16

Do k = i, 16
c(i,j) = c(i,j)

+a(i,k)*b(j,k)

Make into standard form
−1 0 0

0 −1 0
1 0 −1
1 0 0
0 1 0
0 0 1


 i

j
k

 ≤


−1
−1

0
16
16
16





Linear program representation
Example

Do i = 1, 16
Do j = 1, 16

Do k = i, 16
c(i,j) = c(i,j)

+a(i,k)*b(j,k)

Make into standard form
−1 0 0

0 −1 0
1 0 −1
1 0 0
0 1 0
0 0 1


 i

j
k

 ≤


−1
−1

0
16
16
16


Access matrices Uc Ua Ub[

1 0 0
0 1 0

]
c

 i
j
k

 ,

[
1 0 0
0 0 1

]
a

 i
j
k

 ,

[
0 1 0
0 0 1

]
b

 i
j
k





Linear program representation
Transformations

Many transformations1 are affine functions over linear program
Scanning then regenerates code
Partitioning loop for different processors by adding partition
constraints

1Skew, reverse, interchange, etc



Linear program representation
Partitioning example

Split four processors equally along i
Processor 2

Do i = 5,8
Do j = 1,16

Do k = i,16
c(i,j) = c(i,j)

+a(i,k)*b(j,k)



−1 0 0
0 −1 0
1 0 −1
1 0 0
0 −1 0
0 0 −1

−1 0 0
1 0 0


 i

j
k

 ≤



−1
−1

0
16
16
16
−5

8


Determine local array bounds λz , υz for each processor 1 ≤ z ≤ p.
λ1 = 1, λ2 = 5, λ3 = 9, λ4 = 13
υ1 = 4, υ2 = 8, υ3 = 12, υ4 = 16
Determine local write constraint λz ≤ Uc ≤ υz , 5 ≤ i ≤ 8 and add
to polytope
Works for arbitrary loop structures and accesses



Load balancing

Load describes amount of work each processor must do
For simple loop bodies is number of iterations assigned to
each processor
All processors wait for slowest at join point
Want to minimise idle time at join



Load balancing
Example

Do i = 1, 16
Do j = 1, 16

Do k = i, 16
c(i,j) = c(i,j) + a(i,k) * b(j,k)

Assuming c, a, b are to be partitioned in a similar manner
How should we partition to minimise load imbalance?

Row (along i): processor load 928, 672, 416, 160 iterations
Column (along j): processor load 544, 544, 544, 544 iterations

Why this variation?



Load balance
Example

Partition by row (along i)



Load balance
Example

Partition by column (along j)

Partition by “invariant” iterator j.



Load balance
Polytope based

Generally straightforward to ‘read’ from polytope
Iteration variable with zeros elsewhere in rows and columns is
‘invariant’
Partitioning on ‘invariant’ yields balance

i ‘conflicts’ with k

−1 0 0
0 −1 0
1 0 −1
1 0 0
0 1 0
0 0 1



j ‘invariant’

−1 0 0
0 −1 0
1 0 −1
1 0 0
0 1 0
0 0 1





Reducing Communication

We wish to partition work and data to reduce amount of
communication or remote accesses

Dimension a(n,n) b(n,n)
Do i = 1, n

Do j = 1, n
Do k = 1, n

a(i,j) = b(i,k)
Enddo

Enddo
Enddo

How should we partition to reduce communication?



Reducing communication

Each processor has rows of a and b allocated to it
Look at access pattern of second processor

Dimension a(n,n) b(n,n)
Do i = 1, n

Do j = 1, n
Do k = 1, n

a(i,j) = b(i,k)
Enddo

Enddo
Enddo
The columns of a scheduled to P2 access all of b n2 − n2

p remote
access



Reducing communication

Each processor has rows of a and b allocated to it
Look at access pattern of second processor

Dimension a(n,n) b(n,n)
Do i = 1, n

Do j = 1, n
Do k = 1, n

a(i,j) = b(i,k)
Enddo

Enddo
Enddo
The rows of a scheduled to P2 access corresponding rows of b.
0 remote accesses.



Alignment

The first index of a and b have the same subscript a(i,j), b(i,k)
They are said to be aligned on this index
Partitioning on an aligned index makes all accesses local to
that array reference[

1 0 0
0 1 0

]
a
,

[
1 0 0
0 0 1

]
b

Can transform array layout to make arrays more aligned for
partitioning.
Find A such that AUx is maximally aligned with Uy
Global alignment problem



Synchronisation

Alignment information can also be used to eliminate
synchronisation
Early work in data parallelisation did not focus on
synchronisation
The placement of message passing synchronous
communication between source and sink would (over!) satisfy
the synchronisation requirement
When using data parallel on new single address space
machines, have to reconsider this.
Basic idea, place a barrier synchronisation where there is a
cross-processor data dependence.



Synchronisation

Do i = 1, 16
a(i) = b(i)

Enddo
Do i = 1, 16

c(i) = a(i)
Enddo

Do i = 1, 16
a(17-i) = b(i)

Enddo
Do i = 1, 16

c(i) = a(i)
Enddo

Barrier placed between each loop. But are they necessary?
Data that is written always local. (local write rule)
Data that is aligned on partitioned index is local.
No need for barriers here



Summary

VERY brief overview of auto- parallelism
Parallelisation for fork/join
Mapping parallelism to shared memory multi-processors
Data Partitioning and SPMD parallelism
Multi-core processor are common place
Sure to be an active area of research for years to come



PPar CDT Advert

The biggest revolution 
in the technological 
landscape for fifty years

Now accepting applications! 
Find out more and apply at: 

pervasiveparallelism.inf.ed.ac.uk 

• • 4-year programme:    4-year programme:    
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s 
School of Informatics
 ✴ Ranked top in the UK by 
2014 REF

 ▶ Edinburgh Parallel Computing 
Centre
 ✴ UK’s largest supercomputing 
centre

• Full funding available

• Industrial engagement 
programme includes 
internships at leading 
companies

• Research-focused:
    Work on your thesis topic   
    from the start

• Research topics in software, 
hardware, theory and 

    application of: 
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution


