Compiler Optimisation

11 — Parallelisation

Hugh Leather
IF 1.18a
hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh

2019

Introduction

This lecture:
e Parallelisation for fork/join
@ Mapping parallelism to shared memory multi-processors
@ Loop distribution and fusion
e Data Partitioning and SPMD parallelism
°

Communication, synchronisation and load imbalance.

Introduction

Approaches to parallelisation

@ Two approaches to parallelisation
e Traditional shared memory
Single address space
Based on finding parallel loop iterations
e Distributed memory compilation
Physically distributed memory uses a mixture of both
Focus on mapping data, computation

@ Can show equivalence

Implement shared memory on distributed
Implement distributed memory on shared

Introduction

Approaches to parallelisation

Shared memory - single address space

Introduction

Approaches to parallelisation

Shared memory - probably private caches, but looks like single
address space

|
'-
L]
i
*a
.

Introduction

Approaches to parallelisation

Distributed memory - each machine has own address space
Use message passing

Loop Parallelisation

@ Assume a single address space machine. Each processor sees
the same set of addresses. Do not need to know physical
location of memory reference.

@ Control-orientated approach. Concerned with finding
independent iterations of a loop. Then map or schedule these
to the processor.

@ Aim: find maximum amount of parallelism and minimise
synchronisation.

@ Secondary aim: improve load imbalance. Inter-processor
communication not considered.

@ Main memory just part of hierarchy - so use uni-processor
approaches.

Loop Parallelisation
Fork/join

@ Fork (create) threads at beginning of loop

. . Fork
@ Thread executes one or more iterations.
Depend on later scheduling policy Thread -
@ Join (synchronisation/barrier) at end of loop
@ Synchronisation expensive J
oin

e Favour outer loop parallelism
o Loop interchange

Loop Parallelisation
DOALL Implementation

Original

Doi=1, N p=get_num_proc() SUBROUTINE x_sub()
A(i)=B(i) fork(x_sub,p) p = get_num_proc()
C(i)=A(i) join() z = my_id0O

Enddo ilo = N/p * (z-1) +1

ihi = min(N, ilo+N/p)
Do i = ilo, ihi
A(i) = B(i)
C(i) = A(1)
Enddo
END

Generate p independent threads of work
@ Each has private local variables, z, ilo, ihi
@ Access shared arrays A, B and C

Loop Parallelisation

Using loop interchange

0(n) synchronisaion poins

Doi=1, N Doi=1, N
Do j =1, M Parallel Do j =1, M
a(i+1,j) = a(i,j)+c a(i+1,j) = a(i,j)+c
Enddo Enddo
Enddo) Enddo)
Do j =1, M Parallel Do j =1, M
Doi=1, N Doi=1, N
a(i+1,j) = a(di,j)+c a(i+1,j) = a(d,j)+c
Enddo Enddo
Enddo) Enddo

Interchange has reduced synchronisation overhead from O(N) to 1.

Parallelisation approach

@ Loop distribution eliminates carried dependences and creates
opportunity for outer-loop parallelism.

@ However increases number of synchronisations needed after
each distributed loop.

@ Maximal distribution often finds components too small for
efficient parallelisation

@ Solution: fuse together parallelisable loops.

Loop Fusion

Fusion illegal if changes the dependence direction

Two loops - same bounds

Doi=1, N

a(i) = b(i) + ¢
Enddo
Doi=1, N

d(i) = a(i) + e
Enddo

Profitability: Parallel and sequéntialloops should not generally be
merged

Loop Fusion

Fusion illegal if changes the dependence direction

Two loops - same bounds

Doi=1, N Doi=1, N

a(i) = b(i) + ¢ a(i) = b(i) + ¢
Enddo d(i) = a(i+l) + e
Doi=1, N Enddo

d(i) = a(i+l) + e
Enddo

Take care that fusing does not prevent parallelisation

Data Parallelism

@ Alternative approach where we focus on mapping data rather
than control flow to the machine

e Data is partitioned/distributed across the processors of the
machine

@ The computation is then mapped to follow the data - typically
such that work writes to local data. Local write/owner
computes rule.

@ All of this is based on the SPMD computational model. Each
processor runs one thread executing the same program,
operating on the different data

@ This means that loop bounds change from processor to
processor.

Data Parallelism

Mapping

Placement of work and data on processors. Assume
parallelism found in a previous stage

Typically program parallelism O(n) is much greater than
machine parallelism O(p), n >> p

We have many options as to how to map a parallel program

Key issue: What is the best mapping that achieves O(p)
parallelism but minimises cost

Costs include communication, load imbalance and
synchronisation

Data Placement

Simple Fortran example

Iteration space

j loop
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9

i loop 1

23 4 5 6 7 8 9 10

Dimension Integer a(4,8) 45 6 7 8 9 10 11 12
Doi=1, 4
Do j =1, 8 Data space
’ index 1
a(i,jd) =1+ j _ 1 2 3 4 5 6 7 8
Enddo ndex2, 1 374 5 67 8 9
Enddo 3 4 5 6 7 8 9 10

Note that here data and iteration spaces line up. Generally not the
case

Data Placement

Simple Fortran example

Partitioning by columns of a and hence iterator j : Local writes

Processor 1

Dimension Integer Iteration space

j loop
a(4,1..2) _ 1 2 3 4 5 6 7 8
Doi=1, 4 Moop [54 5|6 7]8 o
Do j=1,2 2|3 4|5 6|7 8 9 10
a(i,j) =1+ j 34 s|e6 7|8 9|10 11
Enddo 4|5 6|7 8|9 10|11 12
Enddo
Data space
index 1
]I;_rocessqr3lt . 1.2 3 4.5 6 7 8
:EZGHSI((;I)l nteger ndex2. 05 7 3]a 5|6 7]8 o
a 5..
5 ’ L4 2|3 a5 6|7 8|9 10
oi=
o 34 5|6 7|8 910 11
Do j =5, 6
.. . . 45 6|7 8|9 10 11 12
a(i,j) =1+ j
EIl d dO Processor Processor Processor Processor

Enddo

Data Placement

Simple Fortran example

Partitioning by rows of a and hence iterator i: Local writes

Processor 1

Dimension Integer Iteration space

j loop
a(1..1,1..8) _ 1 2 3 4 5 6 7 8
Doi=1,1 Moop ([374 5 6 7 8 9
Do j=1, 8 2[3 4 5 6 7 8 9 10
a(i,j) =1+ j 34 5 6 7 8 9 10 11
Enddo 4|5 6 7 8 9 ‘10 11‘12
Enddo
Data space
index 1
grocessqr 3 Int . 1 2 3 4 5 6 7 8
imension Integer index 2, [RSN NN=N
a(3..3,1..8)
: 23 4 5 6 7 8 9 10
Do i =3, 3
X 34 5 6 7 8 9 10 11
Do j=1, 8
. . . 45 6 7 8 9 10 11 12
a(i,j) =1+ j
Enddo

Enddo

Linear program representation

Iteration space defined by loop bound constraints
Constraints are affine (37 < &)

Matrix standard form (A7 < &)

Each constraint defines half space

Iteration space is intersection of half spaces (polytope)
Iterations at integer lattice points within iteration space
o Typically unit lattices

Array access patterns as affine functions over iteration vectors
(f(i) = Bi + d)

Linear program representation

Example
Iteration constraints
Do i =1, 16 1<i
Do j =1, 16 1<
Do k =i, 16 i<k
c(i,j) = c(i,]j) i<16
+a(i,k)*b(j,k) j<16
k<16

Linear program representation

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(i,]

+a(i,k)*b(j,k)

Make into standard form

1-i<0
1-j<0
i—k<0
i< 16
Jj <16
k <16

Linear program representation

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(i,]

+a(i,k)*b(j,k)

Make into standard form

—i< -1
—j<-1
i—k<0
i< 16
Jj <16
k <16

Linear program representation

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(d,7)

+a(i,k)*b(j,k)

Make into standard form

—1.i40j+0k< -1

0.i+—1j+0k<-1

1Li+0j+-1.k<0
1i+0j+0k<16
0.i+1j4+0k<16
0.i+0j+1.k<16

Linear program representation

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(d,7)
+a(i,k)*b(j,k)
-
k
\

O O HFOR

=N S Nellel Nl

Make into standard form

= O OoOlr OO

Linear program representation

Example
Make into standard form

Doi=1, 16 -1 0 0 -1
Do j =1, 16 A N B
Dok =i, 16 T o0 o ||/ || 16
c(i,j) = c(d,7j) 0 1 o0 k 16
+a(i,k)*b(j,k) 0 0 1 16

Access matrices U. U, Up,

100 ! 100 ! 010 ’

010 R O S 1010 01 J

c| k a| k b | k

Linear program representation

Transformations

e Many transformations! are affine functions over linear program
@ Scanning then regenerates code

@ Partitioning loop for different processors by adding partition
constraints

1Skew, reverse, interchange, etc

Linear program representation

Partitioning example

Split four processors equally along i -1 0 0 -1
Processor 2 0o -1 0 -1
1 0 -1 . 0

Do i = 5,8 I 0 o |16
Do j = 1,16 0 -1 0 =] e
Do k = i,16 0 0 -1 16
c(i,j) = c(i,)) -1 0 0 =5
+a(i,k)*b(j,k) 1 0 0 8

Determine local array bounds \,, v, for each processor 1 < z < p.
AM=LX=5X3=9) =13

v1 =4,vp =8,u3 =12, 14 = 16

Determine local write constraint A\, < U, < v,,5 < i < 8 and add
to polytope

Works for arbitrary loop structures and accesses

Load balancing

@ Load describes amount of work each processor must do

@ For simple loop bodies is number of iterations assigned to
each processor

@ All processors wait for slowest at join point

@ Want to minimise idle time at join

Load balancing

Example
Do i =1, 16
Do j =1, 16
Do k = i, 16
c(i,j) = c(i,j) + a(i,k) * b(j,k)

Assuming c, a, b are to be partitioned in a similar manner
How should we partition to minimise load imbalance?

@ Row (along i): processor load 928, 672, 416, 160 iterations
e Column (along j): processor load 544, 544, 544, 544 iterations

Why this variation?

Load balance

Example

Partition by row (along i)

Load balance

Example

Partition by column (along)

AN

Partition by “invariant” iterator j.

Load balance
Polytope based

@ Generally straightforward to ‘read’ from polytope

@ lteration variable with zeros elsewhere in rows and columns is

‘invariant’

@ Partitioning on ‘invariant’ yields balance

i ‘conflicts” with k

0
-1
0

O O k= O =

o = O

= O Ok O O

J ‘invariant’

[—1
0

O O =k

O R OO = O

= O Ol O O

Reducing Communication

We wish to partition work and data to reduce amount of
communication or remote accesses

Dimension a(n,n) b(n,n)
Doi=1, n
Do j=1,n
Dok =1, n
a(i,j) = b(i,k)
Enddo
Enddo
Enddo

How should we partition to reduce communication?

Reducing communication

Each processor has rows of a and b allocated to it
Look at access pattern of second processor

Dimension a(n,n) b(n,n) Array a Array b
Doi=1, n
Do j=1,n
Dok =1, n
a(i,j) = b(i,k)
Fnddo P, P, P, P, P, P, P, P,
Enddo
Enddo

The columns of a scheduled to P2 access all of b n? — ”g

aCcess

remote

Reducing communication

Each processor has rows of a and b allocated to it
Look at access pattern of second processor

Dimension a(n,n) b(n,n) Array a Array b

Doi=1,n P,
boJ =1, m HH
2

Dok =1, n P,
a(i,j) = b(i,k) 5
Enddo
Enddo

Enddo)
The rows of a scheduled to P2 access corresponding rows of b.

0 remote accesses.

Alignment

|

@ The first index of a and b have the same subscript a(i,j), b(i,k)
@ They are said to be aligned on this index

@ Partitioning on an aligned index makes all accesses local to
that array reference

1 00 1 00
0107|001
a b

Can transform array layout to make arrays more aligned for
partitioning.

Find A such that Al is maximally aligned with U/,

Global alignment problem

Synchronisation

@ Alignment information can also be used to eliminate
synchronisation

o Early work in data parallelisation did not focus on
synchronisation

@ The placement of message passing synchronous
communication between source and sink would (over!) satisfy
the synchronisation requirement

@ When using data parallel on new single address space
machines, have to reconsider this.

o Basic idea, place a barrier synchronisation where there is a
cross-processor data dependence.

Synchronisation

Do i=1, 16
a(i) = b(i)
Enddo
Doi=1, 16
c(i) = a(i)
Enddo

Do i=1, 16
a(17-i) = b(i)

Enddo

Doi=1, 16
c(i) = a(i)

Enddo

@ Barrier placed between each loop. But are they necessary?

Data that is written always local. (local write rule)

o
@ Data that is aligned on partitioned index is local.
o

No need for barriers here

Summary

VERY brief overview of auto- parallelism

Parallelisation for fork/join

Mapping parallelism to shared memory multi-processors
Data Partitioning and SPMD parallelism

Multi-core processor are common place

Sure to be an active area of research for years to come

PPar CDT Advert

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

* 4-year programme: Research topics in software,
MSc by Research + PhD hardware, theory and

application of:

» Parallelism

» Concurrency

» Distribution

« Research-focused:
Work on your thesis topic
from the start

Full funding available
« Collaboration between:
» University of Edinburgh’s
School of Informatics Industrial engagement
* Ranked top in the UK by programme includes
2014 REF internships at leading
» Edinburgh Parallel Computing companies
Centre
* UK's largest supercomputing
centre

A i
informatics

Research Council

