
Compiler Optimisation
1 – Introductory Lecture

Hugh Leather
IF 1.18a

hleather@inf.ed.ac.uk

Institute for Computing Systems Architecture
School of Informatics

University of Edinburgh

2019



Textbooks

Engineering a Compiler “ EaC” by K. D. Cooper and L.
Torczon. Published by Morgan Kaufmann 2003
Optimizing Compilers for Modern Architectures: A
Dependence-based Approach “ CMA” by R. Allen and K.
Kennedy. Published Morgan Kaufmann 2001
Advanced Compiler Design and Implementation by
Steven S. Muchnick, published by Morgan Kaufmann. (extra
reading - not required)
Plus research papers in last part of course

Note: Slides do not replace books. Provide motivation, concepts
and examples not details.



How to get the most out of the course

Read ahead including exam questions and use lectures to ask
questions
L1 is a recap and sets the stage. Check you are comfortable
Take notes
Do the course work and write well. Straightforward - schedule
smartly
Exam results tend to be highly bi-modal
If you are struggling, ask earlier rather than later
If you dont understand - its probably my fault - so ask!



Course structure

L1 Introduction and Recap
L2 Course Work - again updated from last year
4-5 lectures on classical optimisation
(Based on EaC)
5-6 lectures on high level/parallel
(Based on CMA + papers)
4-5 lectures on adaptive compilation
(Based on papers)
Additional lectures on course work/ revision/ external talks/
research directions



Compilers review
What is a compiler?

Translates a program from source language to target language
Often target is assembly
If target is a source language then “source-to-source” compiler

Compare this to an interpreter



Compilers review
What is a compiler?

Translates a program from source language to target language
Often target is assembly
If target is a source language then “source-to-source” compiler
Compare this to an interpreter



Compilers review
Optimisation

Just translating not enough - must optimise!
Not just performance - also code size, power, energy
Generally undecidable, often NP-complete
Gap between potential performance and actual widening
Many architectural issues to think about

Exploiting parallelism: instruction, thread, multi-core,
accelerators
Effective management of memory hierarchy
registers,LI,L2,L3,Mem,Disk

Small architectural changes have big impact - hard to reason about
Program optimised for CPU with Random cache replacement.
What do you change for new machine with LRU?



Compilers review
Typical compiler structure

Front end takes string of characters into abstract syntax tree
Optimiser does machine independent optimisations
Back end does machine dependent optimisation and code
generation



Compilers review
Typical compiler structure

Work broken into small passes or phases
Different IRs used - choice affects later analysis/optimisation



Compilers review
Front end

Front end stages

Lexical Analysis - Scanner
Finds and verifies basic syntactic items - lexemes, tokens using
finite state automata

Syntax Analysis - Parser
Checks tokens follow a grammar based on a context free grammar
and builds an Abstract Syntax Tree (AST)

Semantic Analysis - Parser
Checks all names are consistently used. Various type checking
schemes employed. Attribute grammar to Milner type inference.
Builds a symbol table



Compilers review
Lexical analysis

Find keywords, identifiers, constants, etc. - these are tokens
A set of rules are expressed as regular expressions (RE)
Scanner automatically generated from rules 1

Transform RE → NFA → DFA → Scanner table

Example scanner rules

` → (‘a’|‘b’| . . . |‘z’|‘A’|‘B’| . . . |‘Z’)
digit → (‘0’|‘1’| . . . |‘9’)

integer → digit digit∗

real → digit digit∗ ‘.’ digit digit∗

exp → digit digit∗ ‘.’ digit digit∗ ( ‘e’ | ‘E’ ) digit digit∗

1Except in practically every real compiler, where all of this is hand coded



Compilers review
Lexical analysis

Token scanning example

How are the following classified?
0, 01, 2.6, 2., 2.6E2, and 2E20



Compilers review
Lexical analysis

Each token has at least:
Type (Keyword, LBracket, RBracket, Number, Identifier,
String, etc.)
Text value (and number value etc.)
Source file, line number, position

White space and comments are typically stripped out
Error tokens may be returned



Compilers review
Syntactic analysis

REs not powerful enough
(matched parentheses, operator precedence, etc)
Syntax parser described by context free grammar (often BNF)
Care must be taken to avoid ambiguity
Generators (YACC, BISON, ANTLR) will complain

Example grammar

expr → term op expr | term
term → number | id

op → ∗|+ |−

Parse x − 2 ∗ y



Compilers review
Syntactic analysis

Parse tree for x − 2 ∗ y

Notice this is parsed as x − (2 ∗ y)
What about x ∗ 2 − y?



Compilers review
Syntactic analysis

Parse trees have irrelevant intermediate nodes
Removing them gives AST

Simplified parse tree for x − 2 ∗ y



Compilers review
Syntactic analysis

Arbitrary CFGs can be expensive to parse
Simple dynamic programming T (n) = O(n3)

Restricted classes of CFG with more efficient parsers

CFG classes
LR(1) Left to right scan, Rightmost derivation with 1

symbol lookahead
LL(1) Left to right scan, Leftmost derivation with 1 symbol

lookahead; cannot handle left-recursive grammars
Othersa LR(k), LL(k), SLR(k), LALR(k), LR(k), IELR(k),

GLR(k), LL(*), etc
aSome represent the same langauges



Compilers review
Semantic analysis

Syntactic analysis produces abstract syntax tree
Program may still be invalid
Semantic analysis checks correct meaning and decorates AST
Symbol tables record what names refer to at different scopes
Semantic actions embedded in grammar allow arbitrary code
during parsing
Attribute grammars propagate information around AST



Compilers review
Semantic analysis - symbol tables

Symbol tables provide two operations
lookup(name) retrieve record associated with name
insert(name, record) associate record with name

Stack of symbol tables manages lexical scopes
Lookup searches stack recursively for name

Scope example
(0) char* n = "N";
(0) char* fmt = "%d";
(0) void foo() {
(1) int n = 10;
(2) for( int i = 0; i < n; ++i ) {
(3) printf(fmt, n);
(2) }
(0) }



Compilers review
Semantic analysis - semantic actions

Semantic actions allow arbitrary code to be executed during
parsing
Action executed only on successful parse of rule or
Action provides conditional check to help parser choose
between rules
Side effects can cause trouble with back tracking

Semantic actions

decl → var id = expr {symtab.insert(id.name)}

expr → number | id {assert(symtab.exists(id.name)}



Compilers review
Semantic analysis - attribute grammars

Attribute grammar is a CFG with:
Attributes associated with each symbol
Semantic rules per production to move attributes

Attributes can be inherited or synthesised
Semantic rules can access global data structures, such as a
symbol table

Attribute grammar example - types
expr → term op expr expr .type = Fop( term.type, expr .type )
term → num | id term.type = num.type | id .type
op → ∗ | + | − Fop = F∗ | F+ | F−



Compilers review
Semantic analysis - attribute grammars

Attribute grammar example - x − 2 ∗ y x:int, y:real, int < real

F int real
int int real

real real real

Type matrices can encode errors

Example
F int real double

int int real double
real real real ⊥

double double ⊥ real



Compilers review
Basic Code Generation

Translate AST in to assembler - walk through the tree and emit
code based on node type

ILOC instruction set2,3

Load constant 2 into r2
loadI 2 → r2

Load value x into r1
loadI @x → r1 @x is offset of x
loadA0 r0, r1 → r1 Mem[r0 + r1] → r1

Add integers r1 = r2 + r3
add r2, r3 → r1

3 EaC Appendix A
3Assume activation record pointer in r0



Compilers review
Basic Code Generation

Typical top down generator - left to right - for simple expressions
Assume activation record pointer in register r0

function gen( node ) : Register

case num
r = nextreg()
emit(loadI value( node ) → r)
return r

case id
r = nextreg()
emit( loadI offset( node ) → r)
emit( loadA r0, r → r)
return r

case binop( left, +, right )
rL = gen( left ); rR = gen( right )
emit( add rL, rR → rR )
return rR



Compilers review
Basic Code Generation

Typical top down generator - left to right - for simple expressions
Assume activation record pointer in register r0

function gen( node ) : Register
case num

r = nextreg()
emit(loadI value( node ) → r)
return r

case id
r = nextreg()
emit( loadI offset( node ) → r)
emit( loadA r0, r → r)
return r

case binop( left, +, right )
rL = gen( left ); rR = gen( right )
emit( add rL, rR → rR )
return rR



Compilers review
Basic Code Generation

Typical top down generator - left to right - for simple expressions
Assume activation record pointer in register r0

function gen( node ) : Register
case num

r = nextreg()
emit(loadI value( node ) → r)
return r

case id
r = nextreg()
emit( loadI offset( node ) → r)
emit( loadA r0, r → r)
return r

case binop( left, +, right )
rL = gen( left ); rR = gen( right )
emit( add rL, rR → rR )
return rR



Compilers review
Basic Code Generation

Typical top down generator - left to right - for simple expressions
Assume activation record pointer in register r0

function gen( node ) : Register
case num

r = nextreg()
emit(loadI value( node ) → r)
return r

case id
r = nextreg()
emit( loadI offset( node ) → r)
emit( loadA r0, r → r)
return r

case binop( left, +, right )
rL = gen( left ); rR = gen( right )
emit( add rL, rR → rR )
return rR



Compilers review
Basic Code Generation

Generate code for x − 2 ∗ y

loadI @x → r1
loadA0 r0, r1 → r1
loadI 2 → r2
loadI @y → r3
loadA0 r0, r3 → r3
mult r2, r3 → r3
sub r1, r3 → r3

3 registers used



Compilers review
Basic Code Generation

Generate code for x − 2 ∗ y
loadI @x → r1
loadA0 r0, r1 → r1

loadI 2 → r2
loadI @y → r3
loadA0 r0, r3 → r3
mult r2, r3 → r3
sub r1, r3 → r3

3 registers used



Compilers review
Basic Code Generation

Generate code for x − 2 ∗ y
loadI @x → r1
loadA0 r0, r1 → r1
loadI 2 → r2

loadI @y → r3
loadA0 r0, r3 → r3
mult r2, r3 → r3
sub r1, r3 → r3

3 registers used



Compilers review
Basic Code Generation

Generate code for x − 2 ∗ y
loadI @x → r1
loadA0 r0, r1 → r1
loadI 2 → r2
loadI @y → r3
loadA0 r0, r3 → r3

mult r2, r3 → r3
sub r1, r3 → r3

3 registers used



Compilers review
Basic Code Generation

Generate code for x − 2 ∗ y
loadI @x → r1
loadA0 r0, r1 → r1
loadI 2 → r2
loadI @y → r3
loadA0 r0, r3 → r3
mult r2, r3 → r3

sub r1, r3 → r3
3 registers used



Compilers review
Basic Code Generation

Generate code for x − 2 ∗ y
loadI @x → r1
loadA0 r0, r1 → r1
loadI 2 → r2
loadI @y → r3
loadA0 r0, r3 → r3
mult r2, r3 → r3
sub r1, r3 → r3

3 registers used



Compilers review
Basic Code Generation

Generate code for x − 2 ∗ y
loadI @x → r1
loadA0 r0, r1 → r1
loadI 2 → r2
loadI @y → r3
loadA0 r0, r3 → r3
mult r2, r3 → r3
sub r1, r3 → r3

3 registers used



Compilers review
Optimisation

Reducing number of registers used usually good
Current traversal order left to right
(rL = gen( left ); rR = gen( right ))
Instead traverse child needing most registers first
nextreg() must know which regs unused

Most registers first traversal order
loadI @y → r1
loadA0 r0, r1 → r1
loadI 2 → r2
mult r2, r1 → r1
loadI @x → r2
loadA0 r0, r2 → r2
sub r2, r1 → r2

2 registers used



Compilers review
Optimisation

Expression, x − 2 ∗ y will have context
Subtrees of expression already evaluated?

Common subexpression elimination

a = 2 ∗ y ∗ z
b = x − 2 ∗ y

→ t = 2 ∗ y
a = t ∗ z
b = x − t



Compilers review
Machine models

In first part of course
Assume uni-processor with instruction level parallelism,
registers and memory
Generated assembler should not perform any redundant
computation
Should utilise all available functional units and minimise
impact of latency
Register access is fast compared to memory but limited in
number. Use wisely
Two flavours considered superscalar out-of-order vs VLIW:
Dynamic vs static scheduling

Later consider multi-core architecture



Summary

Compilation as translation and optimisation
Compiler structure
Phase order lexical, syntactic, semantic analysis
Naive code generation and optimisation
Next lecture course work
Then scalar optimisation - middle end



PPar CDT Advert

The biggest revolution 
in the technological 
landscape for fifty years

Now accepting applications! 
Find out more and apply at: 

pervasiveparallelism.inf.ed.ac.uk 

• • 4-year programme:    4-year programme:    
MSc by Research + PhDMSc by Research + PhD

• Collaboration between:
 ▶ University of Edinburgh’s 
School of Informatics
 ✴ Ranked top in the UK by 
2014 REF

 ▶ Edinburgh Parallel Computing 
Centre
 ✴ UK’s largest supercomputing 
centre

• Full funding available

• Industrial engagement 
programme includes 
internships at leading 
companies

• Research-focused:
    Work on your thesis topic   
    from the start

• Research topics in software, 
hardware, theory and 

    application of: 
 ▶ Parallelism
 ▶ Concurrency
 ▶ Distribution


