
Program Transformations

Michael O’Boyle

February, 2014

M. O’Boyle Program Transformations February, 2014



1

Course Structure

• L1 Introduction and Recap, L2 Course Work

• 5 lectures on high level restructuring for parallelism and memory

• Dependence Analysis

• Program Transformations - loop and arrays

• Automatic vectorisation, parallelisation

• Speculative Parallelisation

M. O’Boyle Program Transformations February, 2014



2

Lecture Overview

• Classification of program transformations - loop and array

• Role of dependence

• Loop restructuring - changing the number/type of loop

• Iteration reordering - reordering the iterations scanned.

• Array transformations - data layout transformation

• Simplified presentation. Large number of technicalities. Applicability. Worth.

M. O’Boyle Program Transformations February, 2014



3

References

• Loop Distribution with arbitrary control-flow McKinley and Kennedy
Supercomputing 1990

• D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler Transformations for
High-Performance Computing. ACM Computing Surveys, 26(4), 1994.

• A Framework for Unifying Reordering Transformations (1993) TR

• On the Complexity of Loop Fusion Alain Darte, PACT 1999

• L. Lamport. The parallel execution of do loops. Communications of the ACM,
pages 83–93, February 1974.

M. O’Boyle Program Transformations February, 2014



4

What is a program transformation

• A program transformation is a rewriting of the program such that it has the
same semantics

• More conservatively, all data dependences must be preserved

• Previous lectures looked at IR→IR transformations or assembler→assembler
transformations

• Focus on transformations in the high level source prog. language: source to
source transformations

• Why: Only place where memory reference explicit. Key to restructuring for
memory behaviour and large scale parallelism.

M. O’Boyle Program Transformations February, 2014



5

Classification

Ongoing open question on a correct taxonomy

• Loop

– Structure reordering. Change number of loops
– Iteration reordering. Reorder loop traversal
– Linear models. Express transformation as unimodular matrices.

• Array

– Index reordering
– Duality with loops. Global vs Local.

• All transformations have an associated legality test though some are always
legal.

M. O’Boyle Program Transformations February, 2014



6

Loop Restructuring Index Splitting

Always a legal transformation. No test needed

Do i = 1, 100

a(101 -i) =a(i)

Enddo

Do i = 1, 50

a(101 -i) =a(i)

Enddo

Do i = 51, 100

a(101 -i) =a(i)

Enddo

A sequential loop with dependence [*] is transformed into two independent parallel
loops. Careful selection of split point.

Neither access in each loop refers to same memory location.

All of first loop must execute before second though - why?

M. O’Boyle Program Transformations February, 2014



7

Loop Restructuring: Loop Unrolling

Used for exploiting Instruction Level Parallelism

Always legal - take care of epilogue using index splitting

Do i = 1, 100

a(i) = i

Enddo

Do i = 1, 100, 3

a(i) = i

a(i+1) = i+1

a(i+2) = i+2

Enddo

Do i = 100,100

a(i) = i

Enddo

Non-convex iteration space after transformation - steps. Causes difficulties for
dependence analysis. Can normalise loop though

M. O’Boyle Program Transformations February, 2014



8

Loop Restructuring: Loop Distribution

Do i = 1,10

a(i) =

=a(i-1)

Enddo

. . .
s2

s1
1 2 3 4 10

Do i = 1,10

a(i) =

Enddo

Do i = 1,10

=a(i-1)

Enddo

s1
2 3 4 10

s2

1

1 2 3 4 10. . .

. . .

M. O’Boyle Program Transformations February, 2014



9

Loop Distribution + Statement Reordering

Do i = 1,10

a(i) =

=a(i+1)

Enddo

. . .
s2

s1
1 2 3 4 10

Do i = 1,10

=a(i+1)

Enddo

Do i = 1,10

a(i) =

Enddo

2 3 4 101

1 2 3 4 10. . .

. . .s2

s1
Anti-dependences honoured.

M. O’Boyle Program Transformations February, 2014



10

Loop Restructuring: Loop Fusion

Inverse of loop distribution - needs conformant loops

Do i = 1,100

a(i) =

Enddo

Do j = 1,100

b(j) =

Enddo

Do i = 1,100

a(i) =

b(i) =

Enddo

More difficult than distribution. Dependence constrains application.

Used for increasing ILP and improving register use. Also for fork/join based
parallelisation.

Loops can be partly fused after pre-distribution

M. O’Boyle Program Transformations February, 2014



11

Iteration reordering: Loop interchange

Important widely used transformation

Do i =1, N

Do j = 1,N

a(i,j) = a(i,j-1) +b(i)

Enddo

Enddo

Do i =1, N

Do j = 1,N

a(i,j) = a(i-1,j+1) +b(i)

Enddo

Enddo
Do j =1, N

Do i = 1,N

a(i,j) = a(i,j-1) +b(i)

Enddo

Enddo

[i, j] 7→ [j, i]

Illegal to interchange [1,-1], ,[<,>] why?

M. O’Boyle Program Transformations February, 2014



12

Iteration reordering: Loop interchange

j

i

. .
. .
. .

.. .. .. ..
. .

j

i

. .
. .
. .

.. .. .. ..
. .

Illegal to interchange [1,-1]: New vector [-1,1]:

Impossible dependence.

Linear models check TD > 0

M. O’Boyle Program Transformations February, 2014



13

Loop skewing

Always legal used in wavefront parallelisation

Do i =1, N

Do j = 1,N

a(i,j) = a(i,j-1)

+b(i)

Enddo

Enddo

Do i =1, N

Do j = i+1,i+N

a(i,j-i) = a(i,j-i-1)

+b(i)

Enddo

Enddo

• [i, j] 7→ [i, j + i]

• Equivalent to a change of basis.

• Shifting by a constant referred to as loop bumping

M. O’Boyle Program Transformations February, 2014



14

Loop reversal

Do i =1, N

Do j = 1,N

a(i,j) = a(i,j-1) +b(i)

Enddo

Enddo

Do i =N, 1, -1

Do j = 1,N

a(i,j) = a(i,j-1) +b(i)

Enddo

Enddo

• [i, j] 7→ [−i, j]

• Rarely used in isolation. In unison with previous two.

• Can combine interchange, shewing and reversal as unimodular transformations/
More on this later.

M. O’Boyle Program Transformations February, 2014



15

Tiling = strip-mining plus interchange

Do i =1, N

Do j = 1,N

a(i,j) = a(i,j) +b(i)

Enddo

Enddo

Do i =1, N,s

Do j = 1,N,s

Do ii = i, i+s-1

Do jj = j,j+s-1

a(ii,jj) = a(ii,jj) +b(ii)

Enddo

Enddo

Enddo

Enddo
Do i =1, N

Do j = 1,N,s

Do jj = j,j+s-1

a(i,jj) = a(i,jj)+b(i)

Enddo

Enddo

Enddo

Strip-mine by factor s Non-convex space

Interchange placing smaller strip-mine

inside

M. O’Boyle Program Transformations February, 2014



16

Array layout transformations

• Less extensive literature though perhaps have a more significant impact

• Loop transformations affect all memory references within the loop but not
elsewhere. Local in nature

• Array and more generally data transformations have global impact but do not
affect other references to other arrays.

• Array layout transformations are used to improve memory access performance

• Also form the basis for data distribution based parallelisation schemes for
distributed memory machines.

M. O’Boyle Program Transformations February, 2014



17

Global index reordering

Dual of loop interchange. Always legal! [ii, i2] 7→ [i2, i1]

REAL A[10,20]

Do i =1, 9

Do j = 2,20

a(i,j) = a(i+1,j-1) +b(i)

Enddo

Enddo

a(1,2) =0

REAL A[20,10]

Do i =1, 9

Do j = 2,20

a(j,i) = a(j-1,i+1) +b(i)

Enddo

Enddo

a(2,1) =0

• Array declaration and subscripts interchanged globally

• Difficulties occur if array reshaped on procedure boundaries

M. O’Boyle Program Transformations February, 2014



18

Linearisation/delinearisation

Dual of loop strip-mining/linearisation

REAL a[10,20]

Do i =1, 9

Do j = 2,20

a(i,j) = a(i+1,j-1) +b(i)

Enddo

Enddo

a(1,2) =0

REAL a[200]

Do i =1, 9

Do j = 2, 20

a(20*(i-1)+j) = a(20*(i)+j-1)

+b(i)

Enddo

Enddo

a(2) =0

M. O’Boyle Program Transformations February, 2014



19

Padding

REAL A[10,20]

Do i =1, 9

Do j = 2,20

a(i,j) = a(i+1,j-1) +b(i)

Enddo

Enddo

a(1,2) =0

REAL A[17,20]

Do i =1, 9

Do j = 2,20

a(i,j) = a(i+1,j-1) +b(i)

Enddo

Enddo

a(1,2) =0

• Frequently used to overcome cache conflicts. Very simple

• Pad factor 7 in first index. Normally prime.

M. O’Boyle Program Transformations February, 2014



20

Unification

• Presentation - simplistic conditions of application can be complex for arbitrary
programs.

• Little overall structure.

• Unimodular transformation theory based on linear representation

• Extended to non-singular and the Unified Transformation Framework of Bill
Pugh.

• Will return to look in more detail at this formulation in later lectures.

M. O’Boyle Program Transformations February, 2014



21

Summary

• Large suite of transformations

• Loop restructuring and reordering

• Legality constraints restrict application

• Array based transformations.Always legal but global impact

• Unifying theories provide structured taxonomy.

• Next lecture: Vectorisation

M. O’Boyle Program Transformations February, 2014


