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Course Structure

• L1 Introduction and Recap

• L2 Course Work

• L3+4 Scalar optimisation and dataflow

• L5 Code generation

• L6 Instruction scheduling

• L7 Register allocation

• Then high level approaches followed by adaptive compilation
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Overview

• Local Allocation - spill code

• Clean and dirty spills

• Liveness analysis

• Global Allocation based on graph colouring

• Coalescing
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Problem

• Registers are a finite resource. Sources and targets for many instructions on
modern RISC like architectures.

• Code generation assumes an unbounded number of registers to simplify matters.
Map unbounded number to the finite set.

• Key to this is knowing whether a value within a register is still needed. If
not reuse it. If all values cannot be mapped to k registers - have to spill to
memory - increasingly expensive

• In simplest case a NP-complete problem. Solutions characterised by scope
and heuristics to reduce complexity. Assume code generation and scheduling
unchangeable. Clearly a trade off between reg use and ILP - space and time.
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Local allocation

• Focuses on basic block and maps virtual registers to physical registers

• Top-down allocation computes a priority with most important ones allocated
a reg the others are spilled.

• Poor as virtual registers allocated a physical reg for the entire scope

• Bottom-up - iterates over block allocation on demand. Frees a register if it
“knows” that no longer needed. Uses distance to next use as as spill metric.

• Spill clean values rather dirty as a way of minimising spill code
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Spill code

1 registers: 2 values to manage

x =

y =

= y

= x

x =

Mem[spill] = x

y =

= y

x = Mem[spill]

= x

R1 =

store R1 -> R0 % Mem[R0]=R1

R1 =

= R1

load RO -> R1 % R1 = Mem[R0]

= R1

Write spilled value to memory

Note still need R0 register for storage address.
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Local allocation - spill code

2 registers: x1 clean in r1, x2 dirty in r2. Refer x3,x1,x2- must spill one:

load x1 -> r1

load x2 -> r2

add r2, 1 -> r2

= x3

= x1

= x2

store r2 -> x2

load x3 -> r2

= r2 (use x3)

= r1 (use x1)

load x2 -> r2

= r2 (use x2)

Spill dirty

load x3 -> r1

= r1 (use x3)

load x1 -> r1

= r1 (use x1)

= r2 (use x2)

Spill clean

Not always best sequence x3,x1,x3,x1,x2 - better to spill dirty values

Taking into account clean/dirty data makes it NP-complete
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Beyond basic blocks - Liveness

• Local allocation does not capture reuse of values across multiple blocks

• Must handle values defined in prev blocks and preserve values for later use

• Use live ranges allocate live range to register rather than variables or values A
live range is from the definition to last use

• Perform live variable dataflow analysis to track live variables across blocks.
LiveIn(b) = UEVar(b) ∪ (LiveOut(b) ∩ NotVarKill(b))

• Only values alive at a particular point need be allocated a register - used by
local allocators too. Local approaches fail when tracking location of values
and deciding on spill location
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Global reg allocation

• Makes no distinction between local and global

• From live ranges construct an interference graph

• Colour interference graph so that no two nodes have same colour

• If graph needs more than k colours - decide on where to place spill code

• Colouring is NP-complete so we will need heuristics

• Map colours onto physical processors
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Interference graph

LRa = 

LRb=
=LRb

LRd=

LRc=
......
LRd=LRc

=LRa
=LRd

LRa 

LRb LRc

  LRd

Live ranges interfere if one is live at the definition of another and have different
values
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Graph colouring

• Colour graph with k colours/registers

• Important observation any node n that has less than k neighbours | n | < k

can always be coloured

• Pick any node |n| < k and put on stack

• Remove that node and its edges - this reduces degree of neighbours

• Any remaining nodes - spill one and continue

• Pop nodes of stack and colour
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Graph colouring

1

2

3

4 5

1
2
3
4
5

b

r
g

b

g

3 colours. Remove 1 first as it has a degree less than 3. Colour as we pop
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Graph colouring

a

b c

d b
a
c
d 1

2
1
maybe spill 2

2 colours - all have degree two. Default choose one and spill

If delay spilling can sometimes avoid it. This graph is 2 colourable
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Spill candidates

• Minimise spill cost/ degree

• Spill cost is the loads and stores needed. Weighted by scope - ie avoid inner
loops

• The higher the degree of a node to spill the greater the chance that it will help
colouring

• Negative spill cost load and store to same mem location with no other uses

• Infinite cost - definition immediately followed by use. Spilling does not decrease
live range
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Alternative spilling

• Rather than spilling entire live ranges, spill only in high demand area -partial
live ranges

• Splitting live ranges. Can reduce degree of interference graph. Smart splitting
allows spilling to occur in “cheap” regions

• Coalesce - if two ranges don’t interfere and are connected by a copy - coalesce
into one. Reduces degree of nodes that interfered with both
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Coalescing

1:add LRt, LRu -> LRa

...

2:addI LRa, 0 ->LRb

3:xor LRa, 0 -> LRc

...

4:add LRb, LRw -> LRx

5:add LRc, LRy -> LRz

1:add LRt, LRu -> LRab

...

...

3:xor LRab, 0 -> LRc

4:add LRab, LRw -> LRx

5:add LRc, LRy -> LRz

Live range of a [1..3], b[2...4], c [3..5] connected by 2 copies in 2,3.

Remove one copy here. Can also remove the other
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Coalescing Reduces Degree

cc

abb

a

Guaranteed to not increase degree of interference on neighbours.

If a node interfered with both both before, coalescing helps

As it reduces degree, often applied before colouring takes place
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Conservative Coalescing

Sometimes coalescing can increase the degree of the coalesced node and hence
make colouring even more difficult

Conservative Coalescing |LRij| < max(|LRi|, |LRj|)

Iterative Coalescing: Conservative, Colour, Coalesce again...
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Other approaches

• Top-down uses high level priorities to decide on colouring

• Hierarchical approaches - use control flow structure to guide allocation

• Exhaustive allocation - go through combinatorial options - very expensive but
occasional improvement

• Rematerialisation - if easy to recreate a value do so rather than spill

• Passive splitting using a containment graph to make spills effective
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Ongoing work

• Register allocation is a well studied topic. Linear scan for JITs

• Eisenbeis et al examining optimality of combined reg alloc and scheduling.
Difficulty with general control-flow

• Partitioned register sets complicate matters. Allocation can require insertion
of code which in turn affects allocation. Leupers investigated use of genetic
algs for TM series partitioned reg sets.

• New work by Fabrice Rastello and others. Chordal graphs reduce complexity

• As latency increases see work in combined code generation, instruction
scheduling and register allocation
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Summary

• Local Allocation - spill code

• Liveness analysis

• Global Allocation based on graph colouring

• Bottom-up approaches

• Techniques to reduce spill code
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