Register Allocation

Michael O'Boyle

February, 2014

® School of

informatics

M. O'Boyle Register Allocation February, 2014

o School of _ e
- informatics

Course Structure

e L1 Introduction and Recap

e L2 Course Work

e | 3+4 Scalar optimisation and dataflow
e L5 Code generation

e L6 Instruction scheduling

e L7 Register allocation

e Then high level approaches followed by adaptive compilation

M. O'Boyle Register Allocation February, 2014

o School of _ e
s iInformatics

Overview

e Local Allocation - spill code

e Clean and dirty spills

e Liveness analysis

e Global Allocation based on graph colouring

e Coalescing

M. O’'Boyle Register Allocation February, 2014

® School of _ o
= informatics

Problem

e Registers are a finite resource. Sources and targets for many instructions on
modern RISC like architectures.

e Code generation assumes an unbounded number of registers to simplify matters.
Map unbounded number to the finite set.

e Key to this is knowing whether a value within a register is still needed. If
not reuse it. If all values cannot be mapped to k registers - have to spill to
memory - increasingly expensive

e In simplest case a NP-complete problem. Solutions characterised by scope
and heuristics to reduce complexity. Assume code generation and scheduling
unchangeable. Clearly a trade off between reg use and ILP - space and time.

M. O'Boyle Register Allocation February, 2014

o School of _ e
= iInformatics

Local allocation

e Focuses on basic block and maps virtual registers to physical registers

e Top-down allocation computes a priority with most important ones allocated
a reg the others are spilled.

e Poor as virtual registers allocated a physical reg for the entire scope

e Bottom-up - iterates over block allocation on demand. Frees a register if it
“knows” that no longer needed. Uses distance to next use as as spill metric.

e Spill clean values rather dirty as a way of minimising spill code

M. O'Boyle Register Allocation February, 2014

1 registers: 2 values to manage

<

Spill code
X:
Mem[spill] = x
y':
=Y
x = Mem[spill]
= X

Write spilled value to memory

Note still need RO register for storage address.

® School of _ o
= informatics

R1 =
store R1 -> RO Y% Mem[RO]=R:
Rl =

= R1
load RO -> R1 % R1 = Meml[}
= R1

M. O’'Boyle

Register Allocation

February, 2014

Local allocation - spill code

® School of _ o
= informatics

2 registers: x1 clean in r1, x2 dirty in r2. Refer x3,x1,x2- must spill one:

load x1 -> ri
load x2

add r2,

-> r2
1 -> r2

x3
x1

X2

store r2 -> x2
load x3 -> r2

= r2 (use x3)

= rl1 (use x1)
load x2 -> r2

= r2 (use x2)
Spill dirty

load x3 -> rl
= rl (use x3)
load x1 -> r1
= rl (use x1)
= r2 (use x2)

Spill clean

Not always best sequence x3,x1,x3,x1,x2 - better to spill dirty values

Taking into account clean/dirty data makes it NP-complete

M. O'Boyle

Register Allocation

February, 2014

o School of _ o
= iInformatics

Beyond basic blocks - Liveness
e Local allocation does not capture reuse of values across multiple blocks
e Must handle values defined in prev blocks and preserve values for later use

e Use live ranges allocate live range to register rather than variables or values A
live range is from the definition to last use

e Perform live variable dataflow analysis to track live variables across blocks.
Liveln(b) = UEVar(b) U (LiveOut(b) N NotVarKill(b))

e Only values alive at a particular point need be allocated a register - used by
local allocators too. Local approaches fail when tracking location of values
and deciding on spill location

M. O'Boyle Register Allocation February, 2014

® School of _ o
= informatics

Global reg allocation

e Makes no distinction between local and global

e From live ranges construct an interference graph

e Colour interference graph so that no two nodes have same colour

e |f graph needs more than k colours - decide on where to place spill code
e Colouring is NP-complete so we will need heuristics

e Map colours onto physical processors

M. O'Boyle Register Allocation February, 2014

® School of _ o
s informatics

Interference graph

LRa=
—— @
L Rb= LRc=
=LRb, | ...
L Rd= LRd=LRc
\
=LRa
=LRd

Live ranges interfere if one is live at the definition of another and have different
values

M. O'Boyle Register Allocation February, 2014

o School of _ e
—= informatics

Graph colouring

e Colour graph with k colours/registers

e Important observation any node n that has less than k neighbours | n | < k
can always be coloured

e Pick any node |n| < k and put on stack
e Remove that node and its edges - this reduces degree of neighbours
e Any remaining nodes - spill one and continue

e Pop nodes of stack and colour

M. O'Boyle Register Allocation February, 2014

o School of _ e
= informatics

Graph colouring

R N WSO
Q O T T Q

3 colours. Remove 1 first as it has a degree less than 3. Colour as we pop

M. O'Boyle Register Allocation February, 2014

o School of _ e
- informatics

Graph colouring

€ ¢ 1
ol o o
a |1

G b maybe spill 2

2 colours - all have degree two. Default choose one and spill

If delay spilling can sometimes avoid it. This graph is 2 colourable

M. O’'Boyle Register Allocation February, 2014

o School of _ e
- informatics

Spill candidates

e Minimise spill cost/ degree

e Spill cost is the loads and stores needed. Weighted by scope - ie avoid inner
loops

e The higher the degree of a node to spill the greater the chance that it will help
colouring

e Negative spill cost load and store to same mem location with no other uses

e Infinite cost - definition immediately followed by use. Spilling does not decrease
live range

M. O'Boyle Register Allocation February, 2014

o School of _ e
= informatics

Alternative spilling

e Rather than spilling entire live ranges, spill only in high demand area -partial
live ranges

e Splitting live ranges. Can reduce degree of interference graph. Smart splitting
allows spilling to occur in “cheap” regions

e Coalesce - if two ranges don't interfere and are connected by a copy - coalesce
into one. Reduces degree of nodes that interfered with both

M. O'Boyle Register Allocation February, 2014

o School of _ e
-~ informatics

Coalescing

: _>
1:add LRt, LRu -> LRa {.add LRt, LRu —-> LRab
2:addI LRa, 0 ->LRb

: . .
3:xor LRa, O LRc 3:xor LRab, 0 -> LRc

4:add LRab, LRw -> LRx

: _>
4:add LRb, LRw -> LRx 5:add LRc, LRy -> LRz

5:add LRc, LRy -> LRz
Live range of a [1..3], b[2...4], c [3..5] connected by 2 copies in 2,3.

Remove one copy here. Can also remove the other

M. O'Boyle Register Allocation February, 2014

o School of _ e
—= informatics

Coalescing Reduces Degree

@
© (&

Guaranteed to not increase degree of interference on neighbours.
If a node interfered with both both before, coalescing helps

As it reduces degree, often applied before colouring takes place

M. O’'Boyle Register Allocation February, 2014

o School of _ e
= informatics

Conservative Coalescing

O~

Sometimes coalescing can increase the degree of the coalesced node and hence
make colouring even more difficult

Conservative Coalescing |LR;;| < max(|LR;|,|LR;]|)

Iterative Coalescing: Conservative, Colour, Coalesce again...

M. O’'Boyle Register Allocation February, 2014

o School of _ e
- informatics

Other approaches

e Top-down uses high level priorities to decide on colouring
e Hierarchical approaches - use control flow structure to guide allocation

e Exhaustive allocation - go through combinatorial options - very expensive but
occasional improvement

e Rematerialisation - if easy to recreate a value do so rather than spill

e Passive splitting using a containment graph to make spills effective

M. O'Boyle Register Allocation February, 2014

o School of _ e
-~ informatics

Ongoing work
e Register allocation is a well studied topic. Linear scan for JITs

e Eisenbeis et al examining optimality of combined reg alloc and scheduling.
Difficulty with general control-flow

e Partitioned register sets complicate matters. Allocation can require insertion
of code which in turn affects allocation. Leupers investigated use of genetic
algs for TM series partitioned reg sets.

e New work by Fabrice Rastello and others. Chordal graphs reduce complexity

e As latency increases see work in combined code generation, instruction
scheduling and register allocation

M. O'Boyle Register Allocation February, 2014

o School of _ e
= informatics

Summary

e Local Allocation - spill code

e Liveness analysis

e Global Allocation based on graph colouring
e Bottom-up approaches

e Techniques to reduce spill code

M. O’'Boyle Register Allocation February, 2014

