
Instruction Scheduling

Michael O’Boyle

February, 2014

M. O’Boyle Instruction Scheduling February, 2014



1

Course Structure

• Introduction and Recap

• Course Work

• Scalar optimisation and dataflow

• L5 Code generation

• L6 Instruction scheduling

• Next register allocation

M. O’Boyle Instruction Scheduling February, 2014



2

Overview

• Scheduling to hide latency and exploit ILP

• Dependence graph - dependences between instructions + latency

• Local list Scheduling + priorities

• Forward versus backward scheduling

• Software pipelining of loops

M. O’Boyle Instruction Scheduling February, 2014



3

Aim

• Order instructions to minimise execution time. Hide latency of instructions
such as loads and branches by executing instructions in their shadow

• Exploit instruction level parallelism by making sure there are multiple
instructions available to be simultaneously executed

• Two flavours of ILP: Superscalar and vliw. Both require similar analysis but
vliw is static scheduled and requires more explicit treatment

• Affected by machine resources - number and type of functional unit, number
of registers

• Assume register allocation is separately performed later.

M. O’Boyle Instruction Scheduling February, 2014



4

Example Superscalar, 1 FU: New Op each cycle iff operands ready

w = w*2*x*y*z. Assume global activation pointer in r0

load/stores 3 cycles, mults 2, others 1

1 loadAI r0,@w -> r1

4 add r1,r1 ->r1

5 loadAI r0,@x -> r2

8 mult r1,r2->r1

9 loadAI r0,@y ->r2

12 mult r1,r2 ->r1

13 loadAI r0,@z->r2

16 mult r1,r2 ->r1

18 storeAI r1->r0,@w

21 r1 is free

1 loadAI r0,@w -> r1

2 loadAI r0,@x -> r2

3 loadAI r0,@y ->r3

4 add r1,r1 ->r1

5 mult r1,r2->r1

6 loadAI r0,@z->r2

7 mult r1,r3 ->r1

9 mult r1,r2 ->r1

11 storeAI r1->r0,@w

14 r1 is free

Second version - extra register, move loads earlier. Space vs time

M. O’Boyle Instruction Scheduling February, 2014





6

List Scheduling

• Build a dependence graph of operations and delays

• Determine schedule to minimise execution time

• NP-complete: difficulty comes with determining which of the many available
operands to schedule- need a priority function for tie breaking

• Use a greedy approach - list scheduling for local blocks

• Extend to greater scope later.

M. O’Boyle Instruction Scheduling February, 2014



7

List Scheduling

cycle = 0

ready = leaves of dependence graph G

active = empty

while (ready union active != empty)

if available remove an instruction from ready based on priority

add instruction to active

for each instruction in active

if completed remove from active

for each successor of instruction

if successors operand ready then add to ready

M. O’Boyle Instruction Scheduling February, 2014



8

Example:

a loadAI r0,@w -> r1

b add r1,r1 ->r1

c loadAI r0,@x -> r2

d mult r1,r2->r1

e loadAI r0,@y ->r2

f mult r1,r2 ->r1

g loadAI r0,@z->r2

h mult r1,r2 ->r1

i storeAI r1->r0,@w

a

b

d

f

h

c

e

g

i

3

1

2

2

2

3

3

3

Ignore anti-dependences - assume unlimited registers

Critical path a b d f h i

M. O’Boyle Instruction Scheduling February, 2014



9

Example

a

b

d

f

h

c

e

g

i 3

5

8

10

12

13

10

9

7

1 a loadAI r0,@w -> r1

2 c loadAI r0,@x -> r2

3 e loadAI r0,@y ->r3

4 b add r1,r1 ->r1

5 d mult r1,r2->r1

6 g loadAI r0,@z->r2

7 f mult r1,r3 ->r1

9 h mult r1,r2 ->r1

11 i storeAI r1->r0,@w

List Scheduling here uses critical path as priority. The labelled arcs denote critical
path length for each instruction. Choose highest value first.

M. O’Boyle Instruction Scheduling February, 2014



10

Priorities

• The longest latency path or critical path is a good priority

• Last use of a value - decreases demand for register as moves it nearer def

• Number of descendants - encourages scheduler to pursue multiple paths

• Longer latency first - others can fit in shadow

• Forward list scheduling does well but sometimes backward does better.

M. O’Boyle Instruction Scheduling February, 2014



11

Forward vs Backward: 3 unit VLIW. Does NOT wait for operands

You are responsible for them being available: Fill delays with noops!

lshift

add2

loadI2

add3

loadI1 loadI3

add4

loadI4

addIadd1

store1 store2 store3 store4 store5

cbr

cmp

8 8 8 8 8

7 7 7 7 7

2 5 5 5 5 5

1

opcode loadI lshift add addI cmp store
latency 1 1 2 1 1 4

Schedule for 3 units - integer, integer and store

Priority to critical path - tie break left to right

M. O’Boyle Instruction Scheduling February, 2014



12

Forward and Backward Scheduling: Blanks = noops

Int Int Stores

1 loadI1 lshift

2 loadI2 loadI3

3 loadI4 add1

4 add2 add3

5 add4 addI store1

6 cmp store2

7 store3

8 store4

9 store5

10

11

12

13 cbr

Int Int Stores

1 loadI1

2 addI lshift

3 add4 loadI3

4 add3 loadI2 store5

5 add2 loadI1 store4

6 add1 store3

7 store2

8 store1

9

10

11 cmp

12 cbr

13

M. O’Boyle Instruction Scheduling February, 2014



13

Loop scheduling

• Loop structures can dominate execution time

• Specialist technique software pipelining

• Calculation of minimum initiation interval

• This corresponds to the critical path of a loop

• Modulo Scheduling take into account resources

M. O’Boyle Instruction Scheduling February, 2014



14

Software pipelining

• Scheme aimed at exploiting ILP in loops: Lam 1998. Significant impact on
performance on statically scheduled vliw.

• Previous techniques need unrolling of loop to perform well.

• The recurrence or cyclic dependence length is the equivalent to the critical
path

• Achieves performance by overlapping different iterations of a loop

• Has same effect as hardware pipelining available in out-of-order superscalar

M. O’Boyle Instruction Scheduling February, 2014



15

Example

c=0

for (i= 1,i <=N,i++)

c = c+a[i];

r_c = 0

r_@a = @a

r1 = n*4

r_ub= r1+r_@a

if r_@a >r_ub goto exit

loop: r_a = load(r_@a) -- 3 cycle stall

r_c = r_c + r_a

r_@a = r_@a +4

if r_@a <= r_ub goto Loop

exit: store(c)=rc

If branches take 1 cycle - each iteration takes 4 cycles after scheduling the loop
body. r @a = performed in shadow of load

M. O’Boyle Instruction Scheduling February, 2014



16

Iterations can overlapped: Recurrence on r c shown

r_a = load(r_@a)

r_c = r_c + r_a

if r_@a <= r_ub goto loop
r_@a = r_@a+4

r_a = load(r_@a)
r_a = load(r_@a)

r_c = r_c + r_a
r_c = r_c + r_a
r_@a = r_@a+4
if r_@a <= r_ub goto loop

r_@a = r_@a+4
if r_@a <= r_ub goto loop

Iteration 2 Iteration 3Iteration 1

Time

Resources 

M. O’Boyle Instruction Scheduling February, 2014



17

Software pipelining

C B

A

A

A B

B

B C

C

1

2

3

3

1

2 1

1

2

3

A

B

C

A

B

C 3

1

1

3

A 3 2 C

2

2

Unbounded Iterations Fixed Resources

Each unit is responsible for part of the computation of an iteration. An iteration
is pipelined across several units

M. O’Boyle Instruction Scheduling February, 2014



18

Pipeline evaluation: Recurrence on r c not shown

r_@a = r_@a+4
r_c = r_c + r_a

if r_@a <= r_ub goto loopr_a = load(r_@a)

r_c = r_c + r_a
r_@a = r_@a+4 if r_@a <= r_ub goto loop

r_@a = r_@a+4

r_a = load(r_@a)

r_a = load(r_@a)

r_@a = r_@a+4
r_c = r_c + r_a

r_@a = r_@a+4
r_c = r_c + r_a

r_a = load(r_@a) if r_@a <= r_ub goto loop

if r_@a <= r_ub goto loop

1

...

n

n+1

2

Load Int Branch

M. O’Boyle Instruction Scheduling February, 2014



19

Code template

r_c = r_c + r_a
r_@a = r_@a+4 if r_@a <= r_ub goto loop

r_@a = r_@a+4

r_a = load(r_@a)

r_a = load(r_@a)

r_c = r_c + r_a
r_@a = r_@a+4

prologue

kernel

epilogue

The schedule must consider function unit type, data dependences and latencies

Assume 3 functional units: Load, Int and Branch and vliw processor Generate
this code filling in with noops

M. O’Boyle Instruction Scheduling February, 2014



20

Code

Load Unit Integer Unit Branch Unit
nop r @a = @a nop
nop r1 = n * 4 nop
nop r ub = r1 + r @a nop

r a= load(r @a) rc = 0 nop
nop r @a = r @a + 4 if r @a >r ub goto exit

Loop: r a =load(r @a) r @a = r @a + 4 if r @a >r ub goto exit
nop r c = r c + r a nop

exit nop nop nop
nop r c = r c +ra nop

Respect dependencies and latencies. Inner loop takes just 2 cycles rather than 4

How do we do this automatically?

M. O’Boyle Instruction Scheduling February, 2014



21

Applying software pipelining

• calculate an initiation interval - bounded by number of functional units and
recurrence distance - smaller ii = smaller loop body =faster

• 2 integer ops, 1 unit, min ii = 2

1
. Recurrences on c delay 1 over 1 iteration so

min ii is 1

1
. Combined min ii =2.

• Try scheduling with min ii using modulo scheduling

• If fails try with increased ii

• put in prologue and epilogue code

• May need to put in register copies etc - not considered here

M. O’Boyle Instruction Scheduling February, 2014



22

Data Dependence graph and schedule

1: r_c = 0

2: r_@a = @a

3: r1 = n*4

4: r_ub= r1+r_@a

5: if r_@a >r_ub goto exit

6: loop: r_a = load(r_@a)

7: r_c = r_c + r_a

8: r_@a = r_@a +4

9: if r_@a <= r_ub goto Loop

10:exit: store(c)=rc

2

4

86
5

3

7

1

9

3

Schedule instructions to units modulo ii. 6 and 8 map into load and integer unit
on cycle 0. 9 map into branch on cycle 1. 7 maps into integer on cycle 3 mod 2
= cycle 1.

M. O’Boyle Instruction Scheduling February, 2014



23

Current research

• Much research in different software pipelining techniques

• Difficult when there is general control flow in the loop

• Predication in IA64 for example really helps here

• Some recent work in exhaustive scheduling -ie solve the NP-complete problem
for basic blocks. Show that it is possible if only used when list scheduling fails

• Despite separation of concerns, code generation and ISA have an impact on
scheduling. Cavazos et al PLDI 2004 look at using machine learning to really
automate instruction scheduling

M. O’Boyle Instruction Scheduling February, 2014



24

Summary

• Dependence graph - dependences between instructions + latency

• Local list Scheduling + critical path

• Superblock and trace scheduling - greater scope for optimisation

• Specialist technique software pipelining

• Calculation of minimum initiation interval

• Modulo Scheduling take into account resources

M. O’Boyle Instruction Scheduling February, 2014


