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Overview

e Naive translation and ILOC

e Cost based generation

e Bottom up tiling on low level AST

e Alternative approach based on peephole optimisation
e Superoptimisation

e Multimedia code generation
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Introduction

e Aim to generate the most efficient assembly code

e Decouple problem into three phases: Code generation, instruction scheduling,
register allocation

e In general NP-complete and strongly interact
e |n practise good solutions can be found

e Code generation : would like to automate wherever possible -retargetable ISA
specific translation rules plus generic optimiser
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Code generation for ILOC

e Mapping IR into assembly code

e |[LOC - Simple RISC like instruction set

load r1 — > r2 r2 = Mem[rl]
loadl c1— > rl rl =cl

loadAl r1,cl — > r2 r2 = Mem|rl+cl]
loadAO r1, r2 — > r3 3 = Mem|[rl+r2]

Similarly for stores

Usual add, sub, mult CMP_LT, cbr
Register copy: i2i r1 — >r2
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Cost based translation

e Many ways to do the same thing: i2i r1 — > r2, addl r1,0 — > r2,
Ishiftl r1,0 — >r2 all copy the value of rl to r2

o |f different operators assigned to distinct functional units - big impact
e Simple walk through of first lecture generates inefficient code

e Takes a naive view of location of data and does not exploit different addressing
modes available
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Example
c *d
c and d are variables located at offsets to global data areas @G and ©@H

Both are offset by 4

loadl @G — > rl
loadl 4 — > 12
loadAO r1,r2 — > r3
loadl OH — > r4
loadl 4 — > 5
loadAO r4,rb — > 16
mult r3,r6 — > r7

loadl 4 — > rl
loadAl r1,0G — > r2
loadAl r1,GH — > r3
mult r2,r3 — > r4

Common subexpression hidden from AST
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Tree pattern generation

e Represent AST in a low level form exposing storage type of operands

e Tile AST with operation trees generating <ast,op> i.e. op could implement
abstract syntax tree ast

e Recursively tile tree and bottom-up select the cheapest tiling - locally optimal.

e Overlaps of trees must match - destination of one tree is the source of another
- must agree on storage location - register or memory?

e Operations are connected to AST subtrees by a set of ambiguous rewrite rules.
Ambiguity allows cost based choice.
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Example: 2 * x. x offset 12 from @G

Reg — > Lab
Reg — > Num
Reg— > Ref(Reg)

N
Nrm Ref
»
/N
Lﬂvb N¢um
@G 12

loadl | — > rnew
loadl n — > rnew
load r1— >rnew

Reg — > Ref(+(Regl,Reg2)) loadAO rl, r2 — > rnew
Reg — > Ref(+(Regl,num)) loadAl rl, n — > rnew

Reg— > +(Regl,Reg?)

add r1,r2 — > rnew
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Tiling using rewrite rules

\
Num R‘ef
2 +
Lyb \Num
T
@G| | 12
1: Reg — >Labl tiles lower left loadl @G — > rl
2: Reg— > Num tiles bottom right loadl 12 — > r2
6: Reg— >-+(Regl,Reg?2) tiles + add r1,r2 — > 3
3: Reg— >Ref(Regl) tiles REF load r3 — > r4

Can we do better?
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Selecting the best sequence

There are many different sequences available

2 15
3 124 2,14
4 1263 2]1,6,3

Selecting lowest cost bottom-up gives

1: Reg — > Lab
5: Reg — > Ref(+(Regl,num))
loadl @G — > rl

loadAl r1, 12 — > 12

Cost of bottom matching can be reduced using table lookups
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Cost based selection

e Examples assume all operations are equal cost

e Certain ops may be more expensive - divs

e Other approaches available - peephole optimisation

e Works well with linear IR and gives in practise similar performance
e Sensitive to window size - difficult to argue for optimality

e Needs knowledge of when values are dead

e Has difficulty handling general control-flow
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Recent work: Denali
e Superoptimiser. Attempt to find optimum code - not just improve.

e Denali A goal directed super-optimizer PLDI 2002 by Joshi, Nelson and Randall.
Expect you to read, understand and know this,

e Based on theorem proving over all equivalent programs. Basic idea: use a set
of axioms which define equivalent instructions

e Generate a data structure representing all possible equivalent programs. Then
use a theorem prover to find the shortest sequence

e “There does not exist a program k cycles or less”. Searches all equivalence to
disprove this. Theorem provers designed to be efficient at this type of search
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Denali: A goal directed superoptimizer

Axioms are a mixture of generic and machine specific : Alpha
o 4 = 2° — generic

o (Vk,n :: kx2" = k<<n) — machine specific

o (Vk,n :: kxd4+n = sdaddl(k,n))

Equivalences represented in an E-graph.
O(n) graph can represent O(2") distinct ways of computing term
Goal: Match expression 1 + regb * 4
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Denali: E-graph

+ +

N N

* 1
re?\4 reg{\ll/}\

Dashed lines denote equivalences (matches)
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Denali: A goal directed superoptimizer

Once equivalent programs represented, now need to see if there is a solution in
K cycles.

Unknowns:

o (i, T) Term T started at time |
e A(i,T) Term T finished at time i
e B(i,T) Term i finished by time i

Need constraints to solve.

Let A\(T') = latency of term T
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Denali: A goal directed superoptimizer

Constraints

e N\ir(L(5,T) < A(i + A(T) —1,T)) — arrives A cycles after being launched

* Nir Nogeargs(r)(L(1,T) = B(i — 1,Q)) —operation cannot be launched till
args ready

* Ngeq(B(K —1,Q)) — all terms in the goal must be finished within K cycles

Now test with a SAT solver setting K to a suitable number.

Generates excellent code

Finds best code fast. Approximate memory latency, limited implementation
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Beyond Denali

e Generating Compiler Optimizations from Proofs, Tate et al POPL 2010
e Uses optimized code examples to abstract optimization

e Generalises by building a proof

e Larger language setting than Denali

e Can then search generalised optimisation space

e Skip the category theory!!

e Stochastic Superoptimization, Schkufza et al ASPLOS 2013.
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Multimedia code

e Retargetable code generation key issue in embedded processors
e Heterogeneous instruction sets. Restrictions on function units.
e Exploiting powerful multimedia instructions

e Standard Code generation seems completely blind to parallelism Shorter code
may severely restrict ILP

e Denali gets around this but expensive

e Multimedia instructions are often SIMD like. Need parallelisation techniques.
Middle section of lectures.
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Summary

e Cost based generation

e Bottom up tiling on low level AST

e Alternative approach

e Denali superoptimizer

e Little work on combining this with other phases

e [nstruction scheduling next
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