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Overview

• Naive translation and ILOC

• Cost based generation

• Bottom up tiling on low level AST

• Alternative approach based on peephole optimisation

• Superoptimisation

• Multimedia code generation
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Introduction

• Aim to generate the most efficient assembly code

• Decouple problem into three phases: Code generation, instruction scheduling,
register allocation

• In general NP-complete and strongly interact

• In practise good solutions can be found

• Code generation : would like to automate wherever possible -retargetable ISA
specific translation rules plus generic optimiser
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Code generation for ILOC

• Mapping IR into assembly code

• ILOC - Simple RISC like instruction set

load r1 − > r2 r2 = Mem[r1]
loadI c1− > r1 r1 = c1
loadAI r1, c1 − > r2 r2 = Mem[r1+c1]
loadA0 r1, r2 − > r3 r3 = Mem[r1+r2]

Similarly for stores

Usual add, sub, mult CMP LT, cbr

Register copy: i2i r1 − >r2
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Cost based translation

• Many ways to do the same thing: i2i r1 − > r2, addI r1,0 − > r2,
lshiftI r1,0 − >r2 all copy the value of r1 to r2

• If different operators assigned to distinct functional units - big impact

• Simple walk through of first lecture generates inefficient code

• Takes a naive view of location of data and does not exploit different addressing
modes available
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Example

c * d

c and d are variables located at offsets to global data areas @G and @H

Both are offset by 4

loadI @G − > r1
loadI 4 − > r2
loadA0 r1,r2 − > r3
loadI @H − > r4
loadI 4 − > r5
loadA0 r4,r5 − > r6
mult r3,r6 − > r7

loadI 4 − > r1
loadAI r1,@G − > r2
loadAI r1,@H − > r3
mult r2,r3 − > r4

Common subexpression hidden from AST
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Tree pattern generation

• Represent AST in a low level form exposing storage type of operands

• Tile AST with operation trees generating <ast,op> i.e. op could implement
abstract syntax tree ast

• Recursively tile tree and bottom-up select the cheapest tiling - locally optimal.

• Overlaps of trees must match - destination of one tree is the source of another
- must agree on storage location - register or memory?

• Operations are connected to AST subtrees by a set of ambiguous rewrite rules.
Ambiguity allows cost based choice.
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Example: 2 * x. x offset 12 from @G
*

Num Ref

2 +

Lab Num

@G 12

1: Reg − > Lab loadI l − > rnew
2: Reg − > Num loadI n − > rnew
3: Reg− > Ref(Reg) load r1− >rnew
4: Reg − > Ref(+(Reg1,Reg2)) loadA0 r1, r2 − > rnew
5: Reg − > Ref(+(Reg1,num)) loadAI r1, n − > rnew
6: Reg− > +(Reg1,Reg2) add r1,r2 − > rnew

Arrows have inverse directions
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Tiling using rewrite rules
*

Num Ref

2 +

Lab Num

@G 12

1: Reg − >Lab1 tiles lower left
2: Reg− > Num tiles bottom right
6: Reg− >+(Reg1,Reg2) tiles +
3: Reg− >Ref(Reg1) tiles REF

loadI @G − > r1
loadI 12 − > r2
add r1,r2 − > r3
load r3 − > r4

Can we do better?
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Selecting the best sequence

There are many different sequences available

2 1,5
3 1,2,4 2,1,4
4 1,2,6,3 2,1,6,3

Selecting lowest cost bottom-up gives

1: Reg − > Lab
5: Reg − > Ref(+(Reg1,num))

loadI @G − > r1
loadAI r1, 12 − > r2

Cost of bottom matching can be reduced using table lookups
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Cost based selection

• Examples assume all operations are equal cost

• Certain ops may be more expensive - divs

• Other approaches available - peephole optimisation

• Works well with linear IR and gives in practise similar performance

• Sensitive to window size - difficult to argue for optimality

• Needs knowledge of when values are dead

• Has difficulty handling general control-flow
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Recent work: Denali

• Superoptimiser. Attempt to find optimum code - not just improve.

• Denali A goal directed super-optimizer PLDI 2002 by Joshi, Nelson and Randall.
Expect you to read, understand and know this,

• Based on theorem proving over all equivalent programs. Basic idea: use a set
of axioms which define equivalent instructions

• Generate a data structure representing all possible equivalent programs. Then
use a theorem prover to find the shortest sequence

• “There does not exist a program k cycles or less”. Searches all equivalence to
disprove this. Theorem provers designed to be efficient at this type of search
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Denali: A goal directed superoptimizer

Matcher

Constraint
Generator

solver
SAT

GMA

SAT problem

E−graph

description
architectural

axioms

assemby program
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Denali: A goal directed superoptimizer

Axioms are a mixture of generic and machine specific : Alpha

• 4 = 22 – generic

• (∀k, n :: k∗2n = k<<n) – machine specific

• (∀k, n :: k∗4+n = s4addl(k, n))

Equivalences represented in an E-graph.

O(n) graph can represent O(2n) distinct ways of computing term

Goal: Match expression 1 + reg6 * 4
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Denali: E-graph
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Dashed lines denote equivalences (matches)
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Denali: A goal directed superoptimizer

Once equivalent programs represented, now need to see if there is a solution in
K cycles.

Unknowns:

• L(i, T ) Term T started at time i

• A(i, T ) Term T finished at time i

• B(i, T ) Term i finished by time i

Need constraints to solve.

Let λ(T ) = latency of term T
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Denali: A goal directed superoptimizer

Constraints

•
∧

i,T (L(i, T ) ⇔ A(i + λ(T ) − 1, T )) – arrives λ cycles after being launched

•
∧

i,T

∧
Q∈args(T )(L(i, T ) ⇒ B(i − 1, Q)) –operation cannot be launched till

args ready

•
∧

Q∈G(B(K − 1, Q)) – all terms in the goal must be finished within K cycles

Now test with a SAT solver setting K to a suitable number.

Generates excellent code

Finds best code fast. Approximate memory latency, limited implementation
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Beyond Denali

• Generating Compiler Optimizations from Proofs, Tate et al POPL 2010

• Uses optimized code examples to abstract optimization

• Generalises by building a proof

• Larger language setting than Denali

• Can then search generalised optimisation space

• Skip the category theory!!

• Stochastic Superoptimization, Schkufza et al ASPLOS 2013.
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Multimedia code

• Retargetable code generation key issue in embedded processors

• Heterogeneous instruction sets. Restrictions on function units.

• Exploiting powerful multimedia instructions

• Standard Code generation seems completely blind to parallelism Shorter code
may severely restrict ILP

• Denali gets around this but expensive

• Multimedia instructions are often SIMD like. Need parallelisation techniques.
Middle section of lectures.
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Summary

• Cost based generation

• Bottom up tiling on low level AST

• Alternative approach

• Denali superoptimizer

• Little work on combining this with other phases

• Instruction scheduling next
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