
Scalar Optimisation Part 2

Michael O’Boyle

January 2014

M. O’Boyle Scalar Optimisation January 2014

1

Course Structure

• L1 Introduction and Recap

• 4-5 lectures on classical optimisation

– 2 lectures on scalar optimisation
– Last lecture on redundant expressions
– Today look at dataflow framework and SSA

• 4-5 lectures on high level approaches

• 4-5 lectures on adaptive compilation

M. O’Boyle Scalar Optimisation January 2014

2

Dataflow analysis for redundant expressions: calculate available

DEExpr(b) - subexpressions not overwritten in this block b (local)

NOTKILLED(b) - subexpressions that are not killed (local)

AV AIL(b) =
⋂

p∈pred(b)(DEExpr(p) ∪ (AV AIL(p) ∩ NOTKILLED(p)))

• DEExpr(b) and NOTKILLED(b) can be calculated locally for each basic
block b

• Initialise AV AIL(b) = ∅

• Find for each block in turn calculate AV AIL(b) based on predecessors

• Keep repeating the procedure till results stabilise.

M. O’Boyle Scalar Optimisation January 2014

3

AVAIL() set calculation

m = a+b
n = a+b

r = c + d
p = c + d q = a+b

r = c+d

e = b + 18
s = a + b
u = e + f

e = a + 17
t = c + d
u = e + f

v = a + b
w = c + d
 x = e + f

y = a + b
z = c + d

A

B C

D E

F

G

L

L
S

SS

D
D

D
G

G

M. O’Boyle Scalar Optimisation January 2014

4

Node A B C D E F G
pred - A A C C D,E B,F
DEExpr a+b c+d a+b b+18 a+17 a+b a+b

c+d a+b c+d c+d c+d
e+f e+f e+f

Kill e+f e+f

Calculate Avail(b) for each Basic Block b starting at block A

AV AIL(A) = ∅

AV AIL(B) = (DEExpr(A) ∪ (AV AIL(A) ∩ NOTKILLED(A)))
= {a + b} ∪ (∅ ∩ U) = {a + b}

AV AIL(G) = (DEExpr(B) ∪ (AV AIL(B) ∩ NOTKILLED(B)))⋂
(DEExpr(F) ∪ (AV AIL(F) ∩ NOTKILLED(F)))

M. O’Boyle Scalar Optimisation January 2014

5

Find available expressions

Post order

Node A B C D E F G
Avail1 ∅ a+b a+b a+b,c+d a+b,c+d e+f c+d
Avail2 a+b,c+d,e+f a+b,c+d

Reverse Post order: Finds fixed point on first iteration

Node A B C D E F G
Avail1 ∅ a+b a+b a+b,c+d a+b,c+d a+b,c+d,e+f a+b,c+d

Traversal order affects number of iterations to solve equations.

Will solution always terminate?

How many iterations? What class of problems?

M. O’Boyle Scalar Optimisation January 2014

6

Another example: Dataflow analysis for live variables

• A variable v is live at a point p if there is a path from p to a use of v along
which v is not redefined.

• Useful to eliminate stores of variables no longer needed - useless store
elimination

• Useful for detecting uninitialised variables

• Essential for global register allocation

• Determines whether a variable MAY be read after this BB and is therefore a
candidate to be put in a register

M. O’Boyle Scalar Optimisation January 2014

7

Equations for live vars

LiveOut(b) =
⋃

p∈succ(b)(UEV ar(p) ∪ (LiveOut(p) ∩ NotKilledV ar(p)))

UEV ar(p) upwardly exposed variables used in p before redefinition

NotKilledV ar(p) var not defined in this block p

• Similar to AVAIL

• Depends on successors not predecessors backward vs forward

• AVAIL is an all paths problem (∩) LiveOut any path (∪)

• Can also be solved using iterative algorithm. (How long/terminate?)

M. O’Boyle Scalar Optimisation January 2014

8

Example of LiveOut

i = 1

a =
c=

d=

b =
c =

a=
d =

d= c=

b =

y = a+b

i = i+1
z= c+d

B0

B1

B2 B3

B4 B5

B6

B7

M. O’Boyle Scalar Optimisation January 2014

9

Solution:
B0 B1 B2 B3 B4 B5 B6 B7

UEVar - - - - - - - a,b,c,d,i

NVarKill a,b,c,d,y,z b,d,i,y,z a,i,y,z b,c,i,y,z a,b,c,i,y,z a,b,d,i,y,z a,c,d,i,y,z a,b,c,d

Reverse Post order

Iter B0 B1 B2 B3 B4 B5 B6 B7
0 - - - - - - - -
1 - - a,b,c,d,i - - - a,b,c,d,i -
2 - a,i a,b,c,d,i - a,c,d,i a,c,d,i a,b,c,d,i i
3 i a,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i
4 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i
5 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

5 iterations to fixed point. Is this the quickest solution?

M. O’Boyle Scalar Optimisation January 2014

10

Solution 2

Post order

Iter B0 B1 B2 B3 B4 B5 B6 B7
0 - - - - - - - -
1 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i -
2 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i
3 i a,c,i a,b,c,d,i a,c,d,i a,c,d,i a,c,d,i a,b,c,d,i i

• What is the best order?

• Question: why does all this work?

M. O’Boyle Scalar Optimisation January 2014

11

Semi-lattice

A set L and a meet operator ∧ such that

∀a, b, c ∈ L

1. a ∧ a = a

2. a ∧ b = b ∧ a

3. a ∧ (b ∧ c) = (a ∧ b) ∧ c

∧ imposes an order a ≥ b → a ∧ b = b

Contains a bottom element ⊥, ⊥ ∧ a = ⊥, a ≥ ⊥

Models an ordered finite set of facts

M. O’Boyle Scalar Optimisation January 2014

12

Semi-lattice

• Choose a semi-lattice to represent the facts

• Attach a meaning to each a ∈ L. Each a distinct set of facts

• For each node (basic block) n in the CFG, associate a function fn : L 7→ L.

• It models the behaviour of the code belonging to n

• Avail: Semilatice is (2E,∧),E the set of all expressions, ∧ is ∩.

M. O’Boyle Scalar Optimisation January 2014

13

Example of LiveOut lattice

5

4

3

2

1 a edcb

b c d e c d b e c d c e d e

a b c b ab e ac ac e ad c bc

a b c d e

edcba a b c

ba a a a b

da d e db e b d e c d e

b c d ea c d e a b d e

M. O’Boyle Scalar Optimisation January 2014

14

Round Robin algorithm

for i = 1 to N

Avail(b[i]) = 0

change =true

while (change)

change =false

for i = 0 to N

temp = intersect[i] (Def(x) union (Avail x union Nkill(x)))

if avail(b[i]) != temp

change = true

avail(b[i]) =temp

Standard algorithm to solve dataflow. There are faster ones.

M. O’Boyle Scalar Optimisation January 2014

15

Iterative data flow

• If f is monotone and the semi-lattice bounded then the round robin algorithm
terminates and finds a least fixed point

• Given certain technical constraints on f, there is a unique fixed point and order
of evaluation does not matter

• Pick an order that converges quickly

• A lot of theory about this. Given certain conditions then a round-robin post-
order alg will finish in d(G) + 3 passes where d(G)is the loop connectedness

• Most dataflow fits this. Means runs in linear time. Muchnick for more details
for more in depth explanation.

M. O’Boyle Scalar Optimisation January 2014

16

Other dataflow analysis

• Reaching definitions : Find all places where a variable was defined and not
killed subsequently

• Very Busy Expressions: An expression is evaluated on all paths leaving a block
- used for code hoisting

• Constant Propagation. Shows that a variable v has the same value at point p

regardless of control-flow. Allows specialisation.

• Uses a very small lattice and terminates quickly. Easy to express using SSA
form

M. O’Boyle Scalar Optimisation January 2014

17

SSA form

• Most advanced analysis needs to track def and uses of vars rather than basic
block summary

• Variables can have multiple definitions and uses

• Need to keep track of which def flows to which use over all possible control-flow
paths

• SSA gives a unique name to each definition

• Need φ nodes to handle merging of control-flow

• Can be constructed in O(n) time. Increasingly standard form.

M. O’Boyle Scalar Optimisation January 2014

18

Example SSA

i = 1

d=

b =
c =

d =

d= c=

b =

i = i+1

B0

B1

B2 B3

B4 B5

B6

B7

a3 =

y = a4+b
a4 = (a2,a3)

a1= (a0,a4)
 a2=

M. O’Boyle Scalar Optimisation January 2014

19

Algorithms using SSA

• Many dataflow algorithms are considerably simplified using SSA

• Value numbering. Each value has a unique name allowing value numbering on
complex control-flow

• Constants(n) =
∧

p∈pred(n) Fp(Constants(p))

• Small lattice ⊤ > {-maxint .. +maxint} > ⊥

• Meet operator: ⊤ ∧ x = x,⊥ ∧ x = ⊥, ci ∧ cj = ciifci = cjelse⊥

• Fp depends on the operations in block. Optimistic algorithm

M. O’Boyle Scalar Optimisation January 2014

20

Algorithms using SSA: Constant propagation

Model Fp

x = y if Constants(p) = {(x, c1), (y, c2), ..} then
Constants(p) = Constants(p) - (x, c1) ∪ (x, c2)

• eg update old value of x (c1) with the new value in y (c2)

x = y op z if Constants(p) = {(x, c1), (y, c2), (z, c3)..} then
Constants(p) = Constants(p) - (x, c1) ∪ (x, c2opc3)

• eg update old value of x (c1) with the new value after (c2 op c3)

M. O’Boyle Scalar Optimisation January 2014

21

x0 = 17

x1 = (x0,x2)

x2 = x1+ i0

x0 x1 x2 (when i0 = 0)
0 17 ⊤ ⊤
1 17 17 ∧ ⊤ = 17 17 − {17} ∪ {17 + 0} = 17
2 17 17 ∧ 17 = 17 17 − {17} ∪ {17 + 0} = 17

x0 x1 x2 (when i0 = 1)
0 17 ⊤ ⊤
1 17 17 ∧ ⊤ = 17 17 − {17} ∪ {17 + 1} = 18
2 17 17 ∧ 18 = ⊥ 17 − {17} ∪ {⊥ + 1} = ⊥

M. O’Boyle Scalar Optimisation January 2014

22

Limits and Extensions

• Dataflow assumes that all paths in the CFG are taken hence conservative
approximations

• Guarded SSA attempts to overcome this by having additional meet nodes γ, η

and µ to carry conditional information around

• Arrays considered monolithic objects A[1] = .., =A[2] considered a def-use

• Array based SSA models access patterns - can be generalised using presburger
formula

• Inter-procedural challenging. Pointers destroy analysis! Large research effort
in points-to analysis.

M. O’Boyle Scalar Optimisation January 2014

23

Summary

• Levels of optimisations

• Examined dataflow as a generic optimisation framework

• Round robin algorithm and lattices

• Using SSA as a framework for optimisation

• Limits of dataflow -other techniques?

• Next lecture code generation.

M. O’Boyle Scalar Optimisation January 2014

