
Scalar Optimisation Part 1

Michael O’Boyle

January, 2014

M. O’Boyle Scalar Optimisation January, 2014

1

Course Structure

• L1 Introduction and Recap

• 4/5 lectures on classical optimisation

– 2 lectures on scalar optimisation
– Today example optimisations
– Next lecture dataflow framework and SSA

• 5 lectures on high level approaches

• 4-5 lectures on adaptive compilation

M. O’Boyle Scalar Optimisation January, 2014

2

Overview

• Machine dependent vs independent optimisations

• Redundant elimination example

– Local value numbering
– Super value numbering
– Dominator value numbering

• Alternative general approach

– Global Redundancy Elimination
– Based on iterative dataflow analysis

• Other dataflow analysis: Live variable analysis

M. O’Boyle Scalar Optimisation January, 2014

3

Optimisation Classification

• Machine independent vs dependent - not always a clear distinction. Main
trends in architecture increased memory latency and exploitation of ILP are
machine dependent

• Machine independent applicable to all. Eliminate redundant work, accesses.
Use less expensive operations where possible

• Optimisation can be performed at source, IR, assembler, machine code level.

• Concentrate on machine independent scalar optimisation - IR level.

• Optimisation = analysis + transformation . Form depends on IR - impact on
complexity.

M. O’Boyle Scalar Optimisation January, 2014

4

Redundant expression elimination

An expression x + y is redundant if already evaluated and not redefined

Value numbering: Associate numbers with operators/operands and hash lookup
in table Hash (+,x,y) return value number

If value number already there replace with reference to variable

a3 = x1 + y2

b4 = x1 + y2

a3 = 17
c5 = x1 + y2

a3 = x1 + y2

b4 = a3

a3 = 17
c5 = a3!!

a3
0 = x1

0 + y2
0

b4
0 = x1

0 + y2
0

a3
1 = 17

c5
0 = x1

0 + y2
0

a3
0 = x1

0 + y2
0

b4
0 = a3

0

a3
1 = 174

c5
0 = a3

0

Can be extended to handle larger scope based on dominators. Fails in presence
of general control-flow

M. O’Boyle Scalar Optimisation January, 2014

5

Example: CFG rep of program. Basic blocks + control-flow.

m = a+b
n = a+b

r = c + d
p = c + d q = a+b

r = c+d

e = b + 18
s = a + b
u = e + f

e = a + 17
t = c + d
u = e + f

v = a + b
w = c + d
 x = e + f

y = a + b
z = c + d

A

B C

D E

F

G

L

L
?

? ?

?
?
?

?
?

LVN removes some but not all of redundant expressions: L vs ?

M. O’Boyle Scalar Optimisation January, 2014

6

Super Local Value numbering SVN

Basic blocks(BB) have just one entry and exit.

• Extended BB: (EBB) A tree of BBs {B1, . . . , Bn} where B1 may have multiple
predecessors.

• All others have a single unique predecessor but possibly multiple exits.

• This tree is only entered at the root.

In our example 3 EBBs (A,B,C,D,E), (F), (G)

SVN considers each path within an EBB as single block

So (A,B), (A,C,D), (A,C,E) are considered paths for LVN

M. O’Boyle Scalar Optimisation January, 2014

7

Example: Extended Basic Blocks .

m = a+b
n = a+b

r = c + d
p = c + d q = a+b

r = c+d

e = b + 18
s = a + b
u = e + f

e = a + 17
t = c + d
u = e + f

v = a + b
w = c + d
 x = e + f

y = a + b
z = c + d

A

B C

D E

F

G

L

L

?
?
?

?
?

S

SS

M. O’Boyle Scalar Optimisation January, 2014

8

Dominator Value numbering DVN

SVN based on EBBs fail when there are join paths in the graph.

• Use concept of dominators. Basic idea if reaching paths to a node share
common ancestor nodes, then these can be used for redundancy elimination

• A node X strictly dominates Y (X >> Y) if X 6= Y and if X appears on every
path from the graph entry to Y

Node A B C D E F G
DOM - A A A,C A,C A,C A
IDOM - A A C C C A

IDOM- immediate dominator - forms a dominator tree.

So if expression appears in F but defined in A,C then redundant

M. O’Boyle Scalar Optimisation January, 2014

9

Example: Dominator value numbering.

m = a+b
n = a+b

r = c + d
p = c + d q = a+b

r = c+d

e = b + 18
s = a + b
u = e + f

e = a + 17
t = c + d
u = e + f

v = a + b
w = c + d
 x = e + f

y = a + b
z = c + d

A

B C

D E

F

G

L

L

?

?

S

SS

D
D

D

What about the remaining two ?s in G and F?

M. O’Boyle Scalar Optimisation January, 2014

10

Dataflow analysis

• A formal program analysis that has a wide range of application.

• Described property of a program at a particular point in set based recurrence
equations

• Assumes a control-flow graph(CFG) consisting of nodes (basic blocks) and
edges: control-flow

• Determines property at a point in the program as a function of local information
and approximation of global information

• Approx solutions will converge to exact solution in finite number of iterations
for finite lattices - more detail next lecture

M. O’Boyle Scalar Optimisation January, 2014

11

Dataflow analysis for redundant expressions: calculate available

DEExpr(b) - subexpressions not overwritten in this block b (local)

NOTKILLED(b) - subexpressions that are not killed (local)

AV AIL(b) =
⋂

p∈pred(b)(DEExpr(p) ∪ (AV AIL(p) ∩ NOTKILLED(p)))

• DEExpr(b) and NOTKILLED(b) can be calculated locally for each basic
block b

• Initialise AV AIL(b) = ∅

• For each block in turn calculate AV AIL(b) based on predecessors

• Keep repeating the procedure till results stabilise.

M. O’Boyle Scalar Optimisation January, 2014

12

Find available expressions part 1

Node A B C D E F G
pred - A A C C D,E B,F
DEExpr a+b c+d a+b b+18 a+17 a+b a+b

c+d a+b c+d c+d c+d
e+f e+f e+f

Kill e+f e+f

Calculate Avail(b) for each Basic Block b starting at block A

AV AIL(B) = (DEExpr(A) ∪ (AV AIL(A) ∩ NOTKILLED(A)))
= {a + b} ∪ (∅ ∩ U) = {a + b}

AV AIL(C) = (DEExpr(A) ∪ (AV AIL(A) ∩ NOTKILLED(A)))
= {a + b} ∪ (∅ ∩ U) = {a + b}

M. O’Boyle Scalar Optimisation January, 2014

13

Find available expressions part 2

D and E are the same

AV AIL(D) = (DEExpr(C) ∪ (AV AIL(C) ∩ NOTKILLED(C)))
= {a + b, c + d} ∪ ({a + b} ∩ U) = {a + b, c + d}

AV AIL(E) = (DEExpr(C) ∪ (AV AIL(C) ∩ NOTKILLED(C)))
= {a + b, c + d} ∪ ({a + b} ∩ U) = {a + b, c + d}

F is a join point: 2 predecessors

AV AIL(F) = (DEExpr(D) ∪ (AV AIL(D) ∩ NOTKILLED(D)))⋂
(DEExpr(E) ∪ (AV AIL(E) ∩ NOTKILLED(E)) =

{b + 18, a + b, e + f} ∪ ({a + b, c + d} ∩ U − {e + f})⋂
{a + 17, c + d, e + f} ∪ ({a + b, c + d} ∩ U − {e + f})

= {a + b, c + d, e + f}

M. O’Boyle Scalar Optimisation January, 2014

14

Find available expressions part 3

G another join point

AV AIL(G) = (DEExpr(B) ∪ (AV AIL(B) ∩ NOTKILLED(B)))⋂
(DEExpr(F) ∪ (AV AIL(F) ∩ NOTKILLED(F)))

Calculate this one yourselves

M. O’Boyle Scalar Optimisation January, 2014

15

Example: Global redundancy elim using AVAIL()

m = a+b
n = a+b

r = c + d
p = c + d q = a+b

r = c+d

e = b + 18
s = a + b
u = e + f

e = a + 17
t = c + d
u = e + f

v = a + b
w = c + d
 x = e + f

y = a + b
z = c + d

A

B C

D E

F

G

L

L
S

SS

D
D

D
G

G

M. O’Boyle Scalar Optimisation January, 2014

16

Summary

• Levels of optimisations

• Redundant expression elimination

• LVN, SVN, DVN

• Introduced dataflow as a generic optimisation framework

• Iterative solution to equations

• Next time: More detailed examination of dataflow and SSA

M. O’Boyle Scalar Optimisation January, 2014

